Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "approximate analytical solution" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The Saint-Venant torsion of a Cartesian orthotropic bar with an isosceles right-angled triangle cross-section
Autorzy:
Ecsedi, István
Baksa, Attila
Powiązania:
https://bibliotekanauki.pl/articles/38890068.pdf
Data publikacji:
2024
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
Saint-Venant torsion
approximate analytical solution
lower and upper bounds
torsional rigidity
orthotropic.
Opis:
The Saint-Venant torsion of the Cartesian orthotropic homogeneous linearly elastic bar is considered. The cross-section of the prismatic bar is an isosceles right-angled triangular plane domain. An approximate analytical method is presented to obtain Prandtl’s stress function, shearing stresses, and torsional rigidity. Upper and lower bounds for the torsional rigidity are provided. The obtained results for shearing stresses are verified through FEM computation.
Źródło:
Engineering Transactions; 2024, 72, 1; 81-94
0867-888X
Pojawia się w:
Engineering Transactions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new modification of the reduced differential transform method for nonlinear fractional partial differential equations
Autorzy:
Khalouta, Ali
Kadem, Abdelouahab
Powiązania:
https://bibliotekanauki.pl/articles/1839758.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
nonlinear fractional partial differential equations
Caputo fractional derivative
Shehu transform method
reduced differential transform method
approximate analytical solution
nieliniowe równania różniczkowe cząstkowe ułamkowe
pochodna ułamkowa Caputo
metoda transformacji Shehu
metoda transformacji różnicowej
Opis:
The objective of this study is to present a new modification of the reduced differential transform method (MRDTM) to find an approximate analytical solution of a certain class of nonlinear fractional partial differential equations in particular, nonlinear time-fractional wave-like equations with variable coefficients. This method is a combination of two different methods: the Shehu transform method and the reduced differential transform method. The advantage of the MRDTM is to find the solution without discretization, linearization or restrictive assumptions. Three different examples are presented to demonstrate the applicability and effectiveness of the MRDTM. The numerical results show that the proposed modification is very effective and simple for solving nonlinear fractional partial differential equations.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 3; 45-58
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies