Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "anodisation" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
HPDL Remelting of Anodised Al-Si-Cu Cast Alloys Surfaces
Autorzy:
Labisz, K.
Tański, T.
Janicki, D.
Powiązania:
https://bibliotekanauki.pl/articles/380279.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
innovative foundry technologies
innovative foundry materials
remelting
surface layer
aluminium alloys
anodisation
HPDL laser
innowacyjne technologie odlewnicze
innowacyjne materiały odlewnicze
przetopienie
warstwa wierzchnia
stopy aluminium
anodowanie
laser HPDL
Opis:
The results of the investigations of the laser remelting of the AlSi9Cu4 cast aluminium alloy with the anodised and non-anodised surface layer and hardness changes have been presented in this paper. The surface layer of the tested aluminium samples was remelted with the laser of a continuous work. The power density was from 8,17•103 W/cm2 to 1,63•104 W/cm2. The metallographic tests were conducted in form of light microscope investigations of the received surface layer. The main goal of the investigation was to find the relation between the laser beam power and its power density falling on a material, evaluating the shape and geometry of the remelted layers and their hardness. As the substrate material two types of surfaces of the casted AlSi9Cu4 alloy were applied – the non–treated as cast surface as well the anodized surface. As a device for this type of surface laser treatment the High Power Diode Laser was applied with a maximum power of 2.2 kW and the dimensions of the laser beam focus of 1.8 x 6.8 mm. By mind of such treatment it is also possible to increase hardness as well eliminate porosity and develop metallurgical bonding at the coating-substrate interface. Suitable operating conditions for HPDL laser treatment were finally determined, ranging from 1.0 to 2.0 kW. Under such conditions, taking into account the absorption value, the effects of laser remelting on the surface shape and roughness were studied. The results show that surface roughness is reduced with increasing laser power by the remelting process only for the non-anodised samples, and high porosity can be found in the with high power remelted areas. The laser influence increases with the heat input of the laser processing as well with the anodisation of the surface, because of the absorption enhancement ensured through the obtained alumina layer.
Źródło:
Archives of Foundry Engineering; 2012, 12, 2s; 45-48
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanoporous surface treatment of aluminium by anodisation in oxalic acid
Autorzy:
Dass, G.
Kushwaha, M. K.
Powiązania:
https://bibliotekanauki.pl/articles/367229.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
aluminium
anodisation
SEM
electrical parameters
AAO
oxalic acid
anodowanie
skaningowa mikroskopia elektronowa
parametry elektryczne
kwas szczawiowy
Opis:
Purpose: Well-ordered nanoporous anodic surface on aluminium substrate was obtained by anodisation method in 0.3 M of oxalic acid as an electrolyte. The objective of this perusal is to describe a system for the magnifying diameter of pores and resistance of demolition of the oxide layer at various voltages. The effect of voltage and time of anodisation process in which obtaining the required structure in AAO film. Design/methodology/approach: The experiments have been performed on a setup for anodisation considering variables parameters. In this study, AAO Templates were prepared in oxalic acid of 0.3 M concentration under the potential range of anodisation 30-40 V at relatively temperatures range from 20-30°C of an electrolyte. Anodic voltage, current density and temperature of electrolyte were adopted as electrical parameters during anodisation. Before anodisation starts two crucial pre-treatment i.e. annealing and electropolishing are finished. Findings: The diameter of pores and pitch of pores are well-proportional to anodisation voltage and process time. The pore diameters were 85 nm, 138 nm, 184 nm, 248 nm with having 9, 16, 27, 37 porosity % respectively. The thickness of AAO film in all cases has been found to be maximum or constant after one hour in second step anodisation. The anodisation parameters like voltage, the time duration of the anodisation process and temperature are very essential features which influencing the fabrication of an AAO film. Research limitations/implications: The anodisation process is very easy to perform but very complex to understand as there are many parameters which may affect it. Practical implications: After that, the second step anodisation for the next half hour, there will be no change in the thickness of AAO film but after that dissolution rate starts over the formation rate and finally thickness will be decreasing. Originality/value: Therein is numerous macropores in the membrane with the size of pores variation from 163 to 248 nm. The diameter of pores, thickness, and pore density of AAO film was determined through Scanning Electron Microscopy (SEM), which exhibited that homogeneous honeycomb-like structure has appeared on the entire surface where anodisation performed precisely.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 93, 1-2; 20-25
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies