- Tytuł:
- Aspect-based sentiment classification model employing whale-optimized adaptive neural network
- Autorzy:
-
Balaganesh, Nallathambi
Muneeswaran, K. - Powiązania:
- https://bibliotekanauki.pl/articles/2173622.pdf
- Data publikacji:
- 2021
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
aspect-based sentiment analysis
whale optimization algorithm
artificial neural network
opinion mining
analiza nastrojów oparta na aspektach
algorytm optymalizacji wielorybów
sztuczna sieć neuronowa
eksploracja opinii - Opis:
- Nowadays in e-commerce applications, aspect-based sentiment analysis has become vital, and every consumer started focusing on various aspects of the product before making the purchasing decision on online portals like Amazon, Walmart, Alibaba, etc. Hence, the enhancement of sentiment classification considering every aspect of products and services is in the limelight. In this proposed research, an aspect-based sentiment classification model has been developed employing sentiment whale-optimized adaptive neural network (SWOANN) for classifying the sentiment for key aspects of products and services. The accuracy of sentiment classification of the product and services has been improved by the optimal selection of weights of neurons in the proposed model. The promising results are obtained by analyzing the mobile phone review dataset when compared with other existing sentiment classification approaches such as support vector machine (SVM) and artificial neural network (ANN). The proposed work uses key features such as the positive opinion score, negative opinion score, and term frequency-inverse document frequency (TF-IDF) for representing each aspect of products and services, which further improves the overall effectiveness of the classifier. The proposed model can be compatible with any sentiment classification problem of products and services.
- Źródło:
-
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137271
0239-7528 - Pojawia się w:
- Bulletin of the Polish Academy of Sciences. Technical Sciences
- Dostawca treści:
- Biblioteka Nauki