Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "algorytm PSO" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Algorytmy stadne w problemach optymalizacji
Swarm Algorithms in Optimization Problems
Autorzy:
Filipowicz, B.
Kwiecień, J.
Powiązania:
https://bibliotekanauki.pl/articles/274567.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
optymalizacja nieliniowa
algorytm PSO
algorytm pszczeli
algorytm świetlika
nonlinear optimization
particle swarm optimization (PSO)
bee algorithm
firefly algorithm
Opis:
W artykule przedstawiono zastosowanie algorytmu optymalizacji rojem cząstek, algorytmu pszczelego i algorytmu świetlika do wyznaczenia optymalnego rozwiązania wybranych testowych funkcji ciągłych. Przedstawiono i porównano wyniki badań dla funkcji Rosenbrocka, Rastrigina i de Jonga.
This paper presents particle swarm optimization, bee algorithm and firefly algorithm, used for optimal solution of selected continuous well-known functions. Results of these algorithms are compared to each other on Rosenbrock, Rastrigin and de Jong functions.
Źródło:
Pomiary Automatyka Robotyka; 2011, 15, 12; 152-157
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effectiveness of the MPSO algorithm in optimization of the coil arrangement
Skuteczność algorytmu MPSO w optymalizacji układu cewek
Autorzy:
Borowska, B.
Powiązania:
https://bibliotekanauki.pl/articles/159534.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Elektrotechniki
Tematy:
elektromagnetyzm
optymalizacja
algorytm PSO
pole magnetyczne
electromagnetism
optimization
particle swarm optimization (PSO)
magnetic field
Opis:
One of the most important problems in designing of various constructions is optimization of technical facilities. The optimization process leads to find the best solution of a considered problem, and the solution should meet established criteria. Evolutionary algorithms have been found to be effective in solving such optimization problems. In the following paper, a modification of the PSO algorithm has been proposed in order to determine an optimal geometry of the coil arrangement evoking, in a defined active area, magnetic field of the largest possible gradient, and simultaneously keep this gradient relatively stable. The computations confirmed high efficiency of the proposed method. The results were also compared with the achievements of other evolutionary algorithms.
Jednym z najważniejszych zagadnień w projektowaniu różnych konstrukcji jest optymalizacja urządzeń technicznych. Jej celem jest znalezienie najlepszego rozwiązania rozpatrywanego zagadnienia o najlepszych w sensie przyjętych kryteriów parametrach. Do rozwiązywania tego typu zadań m.in. stosuje się algorytmy ewolucyjne. Aby algorytm był skuteczny często niezbędne jest jednak przeprowadzenie bardzo dużej liczby obliczeń. W celu redukcji kosztów obliczeń w artykule zaproponowano algorytm MPSO będący modyfikacją algorytmu PSO do problemu wyznaczenia optymalnej konstrukcji. Zadaniem zaproponowanego algorytmu było wyznaczenie optymalnej geometrii układu cewek generujących w zdefiniowanym obszarze aktywnym pola magnetycznego o możliwie dużym gradiencie przy zachowaniu jak największej stałości tego gradientu. Na podstawie przeprowadzonych badań, dokonano porównania efektywności zaproponowanej metody MPSO z osiągnięciami standardowego algorytmu optymalizacji cząsteczkowej PSO oraz algorytmu Θ-PSO zaproponowanego przez Zhong i innych [24]. Przeprowadzone obliczenia potwierdziły skuteczność algorytmu MPSO.
Źródło:
Prace Instytutu Elektrotechniki; 2010, 246; 35-44
0032-6216
Pojawia się w:
Prace Instytutu Elektrotechniki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of inertia weight on the Particle Swarm Optimization algorithm
Autorzy:
Cekus, D.
Skrobek, D.
Powiązania:
https://bibliotekanauki.pl/articles/122644.pdf
Data publikacji:
2018
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
particle swarm optimization (PSO)
PSO algorithm
inertia weight
trajectory
optymalizacja rojem cząstek
PSO
algorytm PSO
metoda PSO
algorytm optymalizacji rojem cząstek
trajektoria
współczynnik wagowy
Opis:
The paper presents the use of the Particle Swarm Optimization (PSO) algorithm to find the shortest trajectory connecting two defined points while avoiding obstacles. The influence of the inertia weight and the number of population adopted in the first iteration of the PSO algorithm was examined for the length of the sought trajectory. Simulation results showed that the proposed method achieved significant improvement compared to the linearly decreasing method technique that is widely used in literature.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2018, 17, 4; 5-11
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie algorytmów rojowych do optymalizacji parametrów w modelach układów regulacji
Application of swarm intelligence algorithms to optimization of control system models
Autorzy:
Tomera, M.
Powiązania:
https://bibliotekanauki.pl/articles/269153.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytmy rojowe
optymalizacja parametrów
algorytm mrówkowy
algorytm sztucznej kolonii pszczół
algorytm optymalizacji rojem cząstek
swarm intelligence
swarm based optimization
ant colony optimization
Artificial Bee Colony
particle swarm optimization (PSO)
Opis:
W pracy przedstawione zostały algorytmy rojowe, takie jak: algorytm mrówkowy, zmodyfikowany algorytm mrówkowy, algorytm sztucznej kolonii pszczół oraz algorytm optymalizacji rojem cząstek. Dla tych algorytmów przygotowane zostało oprogramowanie w Matlabie, pozwalające na optymalizację parametrów poszukiwanych modeli matematycznych, wyznaczanych na podstawie przeprowadzonych testów identyfikacyjnych lub na optymalizację parametrów regulatorów zastosowanych w modelach matematycznych układów sterowania.
The paper presents the swarm intelligence algorithms, such as: ant colony algorithm (ACO), the modified ant colony algorithm (MACO), the artificial bee colony algorithm (ABC) and the particle swarm optimization algorithm (PSO). Ant colony optimization (ACO) based upon the observation of the behavior of ant colonies looking for food in the surrounding anthill. Feeding ants it is based on finding the shortest path transitions between a food source and the anthill. In the process of foraging ants on their paths crossing from the nest to a food source and back, they leave a pheromone trail. The work presents also the modified ant colony algorithm (MACO). This algorithm is based on searching the solution space surrounded by the best solution obtained in the previous iteration. If you find a local minimum, the proposed algorithm uses pheromone to find a new solution space, while retaining the position information current local minimum. The artificial bee colony algorithm is one of the well-known swarm intelligence algorithms. In the past decade there has been created several different algorithms based on the observation of the behavior of cooperative bees. Among them, the most frequently analyzed and used is bee algorithm proposed in 2005 by Dervis Karaboga and was be used in the proposed paper. The particle swarm optimization algorithm (PSO) is based on adjusting the change speed of the moving particles to a speed of particles movement in the neighborhood. Particle optimization algorithm is one of the computational techniques derived on the basis of swarm behavior such as flocks of birds and schools of fish, which is the basis for the functioning of the exchange of information to enable them to cooperate. It was noticed that the animals in the herd tend to maintain the optimum distance from their neighbors, by appropriate adjustment of their speed. This method allows the synchronous and collision-free motion, often accompanied by sudden changes of direction and due to the rearrangement of the optimal formation. For these algorithms has been prepared the software in Matlab, allowing to optimization of the mathematical models designated on the basis of the carried out identification tests and control parameters used in the mathematical model of the control system.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 46; 97-102
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mobile Robot Path Planning with Obstacle Avoidance using Particle Swarm Optimization
Planowanie bezkolizyjnej ścieżki ruchu robota mobilnego przy użyciu algorytmu rojowego
Autorzy:
Chołodowicz, E.
Figurowski, D.
Powiązania:
https://bibliotekanauki.pl/articles/274869.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
mobile robot
path planning
obstacle avoidance
particle swarm optimization (PSO)
dynamic environment
robot mobilny
planowanie ścieżki ruchu
unikanie przeszkód
algorytm rojowy
dynamiczne środowisko
Opis:
This paper presents a constrained Particle Swarm Optimization (PSO) algorithm for mobile robot path planning with obstacle avoidance. The optimization problem is analyzed in static and dynamic environments. A smooth path based on cubic splines is generated by the interpolation of optimization solution; the fitness function takes into consideration the path length and obstaclegenerated repulsive zones. World data transformation is introduced to reduce the optimization algorithm computational complexity. Different scenarios are used to test the algorithm in simulation and real-world experiments. In the latter case, a virtual robot following concept is exploited as part of the control strategy. The path generated by the algorithm is presented in results along with its execution by the mobile robot.
W artykule przedstawiono algorytm rojowy z ograniczeniami realizujący planowanie bezkolizyjnej ścieżki ruchu robota mobilnego. Problem optymalizacyjny został przeanalizowany dla środowiska statycznego i dynamicznego. Do stworzenia gładkiej ścieżki ruchu wykorzystano interpolację rozwiązania optymalizacji przy użyciu sześciennych funkcji sklejanych. Funkcja kosztu uwzględnia długość ścieżki ruchu oraz penalizację za naruszenie przestrzeni przeszkód. Wprowadzono transformację świata w celu redukcji złożoności obliczeniowej algorytmu optymalizacji. Przeprowadzono zróżnicowane scenariusze badawcze testujące algorytm w eksperymentach symulacyjnych i rzeczywistych. W przypadku tych ostatnich wykorzystano ideę podążania za wirtualnym robotem. Zaprezentowano wyniki obrazujące wygenerowaną ścieżkę ruchu oraz ocenę jej realizacji przez robota mobilnego.
Źródło:
Pomiary Automatyka Robotyka; 2017, 21, 3; 59-68
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estymacja czasów wykonywania algorytmu sterującego w zależności od platformy sprzętowej na użytek diagnostyki obiektu mechanicznego
Estimation of control algorithm execution times in dependence on the hardware platform for use in mechanical object diagnostics
Autorzy:
Kozłowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/157438.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
algorytm optymalizacji rojem cząstek
funkcje testowe
karta graficzna
procesor
czas obróbki
maszyny wieloosiowe
particle swarm optimization (PSO)
test functions
graphic cards
processor
processing time
multi-axis machines
Opis:
Opracowanie systemów sterowania obiektami mechanicznymi polega na znalezieniu kompromisu między szybkością działania, a wymaganą dokładnością i jest zagadnieniem o dużej złożoności obliczeniowej. W artykule przedstawiono różne implementacje algorytmu Optymalizacji Rojem Cząstek PSO (ang. Particle Swarm Optimization), który stworzono w celu uzyskania minimalnego czasu obróbki przy zachowaniu zadanej dokładności odtwarzania trajektorii ruchu. Jego działanie zostało porównane w językach: C, C++ i C# oraz na procesorze i karcie graficznej. Z przeprowadzonych badań wynika, że dla małej liczby punktów obliczenia na karcie graficznej są wolniejsze niż na procesorze.
: Finding the compromise between speed and accuracy is the most important problem in designing control systems. This is a problem of high computational complexity. The paper presents implementation of the algorithm PSO (Particle Swarm Optimization) whose action has been compared in several programming environments (C / OpenCL and C # / Cloo and in C + +) and hardware platforms (CPU and graphics card processor - GPU). PSO is able to achieve the minimum processing time and best possible mapping of a given trajectory. To compare the speed of the PSO algorithm there was made a measurement of the time of test function minimization. The paper describes three test functions commonly used to test the optimization effectiveness. The results show that for a small number of points the calculations on a graphic card are slower than those performed on the CPU. The appropriate use of available parallel computing technologies can significantly improve the characteristics of a multi-axis machine and the expenses incurred for optimization of the PSO can quickly result in important profits. It should be noted that optimization of the processing speed is most needed where the treatment is most complicated. The profit will be negligible for simple trajectories. In special cases, the optimization may extend the processing time without apparent improvement of the characteristics of trajectory mapping.
Źródło:
Pomiary Automatyka Kontrola; 2013, R. 59, nr 5, 5; 466-469
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel fuzzy c-regression model algorithm using a new error measure and particle swarm optimization
Autorzy:
Soltani, M.
Chaari, A.
Ben Hmida, F.
Powiązania:
https://bibliotekanauki.pl/articles/330134.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
model rozmyty Takagi-Sugeno
algorytm grupowania
metoda najmniejszych kwadratów
optymalizacja rojem cząstek
Takagi-Sugeno fuzzy models
noise clustering algorithm
fuzzy c-regression model
orthogonal least squares
particle swarm optimization (PSO)
Opis:
This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error measure is used in the objective function of the FCRM algorithm, replacing the one used in this type of algorithm. Then, particle swarm optimization is employed to finally tune parameters of the obtained fuzzy model. The orthogonal least squares method is used to identify the unknown parameters of the local linear model. Finally, validation results of two examples are given to demonstrate the effectiveness and practicality of the proposed algorithm.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 3; 617-628
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analytical Study for the Role of Fuzzy Logic in Improving Metaheuristic Optimization Algorithms
Autorzy:
Vij, Sonakshi
Jain, Amita
Tayal, Devendra
Castillo, Oscar
Powiązania:
https://bibliotekanauki.pl/articles/385121.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
fuzzy logic
metaheuristics
evolutionary computing
genetic algorithm
particle swarm optimization (PSO)
ant colony optimization
fuzzy evolutionary algorithm
fuzzy cuckoo
fuzzy simulated annealing
fuzzy swarm intelligence
fuzzy differential evolution
tabu
fuzzy mutation
fuzzy natural selection
fuzzy fitness function
big bang big crunch
fuzzy bacterial
neuro fuzzy logic
logika rozmyta
metaheurystyka
obliczenia ewolucyjne
algorytm genetyczny
optymalizacja roju cząstek
optymalizacja kolonii mrówek
Opis:
The research applications of fuzzy logic have always been multidisciplinary in nature due to its ability in handling vagueness and imprecision. This paper presents an analytical study in the role of fuzzy logic in the area of metaheuristics using Web of Science (WoS) as the data source. In this case, 178 research papers are extracted from it in the time span of 1989-2016. This paper analyzes various aspects of a research publication in a scientometric manner. The top cited research papers, country wise contribution, topmost organizations, top research areas, top source titles, control terms and WoS categories are analyzed. Also, the top 3 fuzzy evolutionary algorithms are extracted and their top research papers are mentioned along with their topmost research domain. Since neuro fuzzy logic poses feasible options for solving numerous research problems, hence a section is also included by the authors to present an analytical study regarding research in it. Overall, this study helps in evaluating the recent research patterns in the field of fuzzy metaheuristics along with envisioning the future trends for the same. While on one hand this helps in providing a new path to the researchers who are beginners in this field as they can start exploring it through the analysis mentioned here, on the other hand it provides an insight to professional researchers too who can dig a little deeper in this field using knowledge from this study.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2018, 12, 4; 11-27
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies