- Tytuł:
-
Badanie i analiza algorytmów rojowych w optymalizacji parametrów regulatora kursu statku
Study and analysis of swarm intelligence in optimizing parameters of the ship course controller - Autorzy:
- Tomera, M.
- Powiązania:
- https://bibliotekanauki.pl/articles/266857.pdf
- Data publikacji:
- 2015
- Wydawca:
- Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
- Tematy:
-
algorytmy rojowe
algorytm genetyczny
optymalizacja stochastyczna
regulator PID
sterowanie statkiem
swarm intelligence
genetic algorithm
random optimization
PID controller
ship control - Opis:
-
W pracy przedstawione zostały badania i analiza zastosowania wybranych algorytmów rojowych do optymalizacji parametrów regulatora PID w układzie sterowania statkiem na kursie. Optymalizacja ta polegała na minimalizacji czasowego wskaźnika jakości wyznaczanego na podstawie odpowiedzi skokowej. Do optymalizacji parametrów regulatora kursu statku wykorzystane zostały algorytmy rojowe, takie jak: algorytm mrówkowy, zmodyfikowany algorytm mrówkowy, algorytm sztucznej kolonii pszczół oraz algorytm optymalizacji rojem cząstek. Przeprowadzone zostały badania szybkości znajdowania optymalnego rozwiązania i wykonana została analiza porównawcza uzyskanych wyników. Zaprezentowane wyniki badań pozwalają stwierdzić, że algorytm optymalizacji rojem cząstek charakteryzuje się najlepszą jakością optymalizacji parametrów regulatora kursu statku.
The paper presents the research and analysis of the use of certain swarm intelligence algorithms to optimize the parameters of PID control in a ship on the course. This optimization was to minimize the performance quality index based on step response of the mathematical model of control system. To optimize the parameters of the ship course controller have been used swarm intelligence algorithms, such as: ant colony algorithm (ACO), the modified ant colony algorithm (MACO), the artificial bee colony algorithm (ABC) and the particle swarm optimization algorithm (PSO). Rate tests were conducted to find the optimal solution and a comparative analysis of the results was made. The presented results of research allow us to conclude that the particle swarm optimization (PSO) algorithm has the best quality of optimizing the control parameters of the course controller. - Źródło:
-
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 46; 103-106
1425-5766
2353-1290 - Pojawia się w:
- Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
- Dostawca treści:
- Biblioteka Nauki