Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "algebraic semantics" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Nilpotent Minimum Logic NM and Pretabularity
Autorzy:
Yang, Eunsuk
Powiązania:
https://bibliotekanauki.pl/articles/750006.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
pretabularity
nilpotent minimum logic
algebraic semantics
fuzzy logic
finite model property
Opis:
This paper deals with pretabularity of fuzzy logics. For this, we first introduce two systems NMnfp and NM½, which are expansions of the fuzzy system NM (Nilpotent minimum logic), and examine the relationships between NMnfp and the another known extended system NM-. Next, we show that NMnfp and NM½ are pretabular, whereas NM is not. We also discuss their algebraic completeness.  
Źródło:
Bulletin of the Section of Logic; 2020, 49, 1
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions
Autorzy:
Cornejo, Juan Manuel
Sankappanavar, Hanamantagouda P.
Powiązania:
https://bibliotekanauki.pl/articles/43189647.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
semi-intuitionistic logic
dually hemimorphic semi-Heyting logic
dually quasi-De Morgan semi-Heyting logic
De Morgan semi-Heyting logic
dually pseudocomplemented semi-Heyting logic
regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1
implicative logic
equivalent algebraic semantics
algebraizable logic
De Morgan Gödel logic
dually pseudocomplemented Gödel logic
Moisil's logic
3-valued Łukasiewicz logic
Opis:
The variety \(\mathbb{DHMSH}\) of dually hemimorphic semi-Heyting algebras was introduced in 2011 by the second author as an expansion of semi-Heyting algebras by a dual hemimorphism. In this paper, we focus on the variety \(\mathbb{DHMSH}\) from a logical point of view. The paper presents an extensive investigation of the logic corresponding to the variety of dually hemimorphic semi-Heyting algebras and of its axiomatic extensions, along with an equally extensive universal algebraic study of their corresponding algebraic semantics. Firstly, we present a Hilbert-style axiomatization of a new logic called "Dually hemimorphic semi-Heyting logic" (\(\mathcal{DHMSH}\), for short), as an expansion of semi-intuitionistic logic \(\mathcal{SI}\) (also called \(\mathcal{SH}\)) introduced by the first author by adding a weak negation (to be interpreted as a dual hemimorphism). We then prove that it is implicative in the sense of Rasiowa and that it is complete with respect to the variety \(\mathbb{DHMSH}\). It is deduced that the logic \(\mathcal{DHMSH}\) is algebraizable in the sense of Blok and Pigozzi, with the variety \(\mathbb{DHMSH}\) as its equivalent algebraic semantics and that the lattice of axiomatic extensions of \(\mathcal{DHMSH}\) is dually isomorphic to the lattice of subvarieties of \(\mathbb{DHMSH}\). A new axiomatization for Moisil's logic is also obtained. Secondly, we characterize the axiomatic extensions of \(\mathcal{DHMSH}\) in which the "Deduction Theorem" holds. Thirdly, we present several new logics, extending the logic \(\mathcal{DHMSH}\), corresponding to several important subvarieties of the variety \(\mathbb{DHMSH}\). These include logics corresponding to the varieties generated by two-element, three-element and some four-element dually quasi-De Morgan semi-Heyting algebras, as well as a new axiomatization for the 3-valued Łukasiewicz logic. Surprisingly, many of these logics turn out to be connexive logics, only a few of which are presented in this paper. Fourthly, we present axiomatizations for two infinite sequences of logics namely, De Morgan Gödel logics and dually pseudocomplemented Gödel logics. Fifthly, axiomatizations are also provided for logics corresponding to many subvarieties of regular dually quasi-De Morgan Stone semi-Heyting algebras, of regular De Morgan semi-Heyting algebras of level 1, and of JI-distributive semi-Heyting algebras of level 1. We conclude the paper with some open problems. Most of the logics considered in this paper are discriminator logics in the sense that they correspond to discriminator varieties. Some of them, just like the classical logic, are even primal in the sense that their corresponding varieties are generated by primal algebras.
Źródło:
Bulletin of the Section of Logic; 2022, 51, 4; 555-645
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
What Is the Sense in Logic and Philosophy of Language
Autorzy:
Wybraniec-Skardowska, Urszula
Powiązania:
https://bibliotekanauki.pl/articles/749864.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
categorisation
denotation
logic and philosophy of language
categorial language
syntactic and semantic senses
intensional semantics
meaning
extensional semantics
syntactic and semantic compatibility
algebraic models
truth
structural compatibility
compositionality
language communication
Opis:
In the paper, various notions of the logical semiotic sense of linguistic expressions – namely, syntactic and semantic, intensional and extensional – are considered and formalised on the basis of a formal-logical conception of any language L characterised categorially in the spirit of certain Husserl's ideas of pure grammar, Leśniewski-Ajdukiewicz's theory of syntactic/semantic categories and, in accordance with Frege's ontological canons, Bocheński's and some of Suszko's ideas of language adequacy of expressions of L. The adequacy ensures their unambiguous syntactic and semantic senses and mutual, syntactic and semantic correspondence guaranteed by the acceptance of a postulate of categorial compatibility of syntactic and semantic (extensional and intensional) categories of expressions of L. This postulate defines the unification of these three logical senses. There are three principles of compositionality which follow from this postulate: one syntactic and two semantic ones already known to Frege. They are treated as conditions of homomorphism of partial algebra of L into algebraic models of L: syntactic, intensional and extensional. In the paper, they are applied to some expressions with quantifiers. Language adequacy connected with the logical senses described in the logical conception of language L is, obviously, an idealisation. The syntactic and semantic unambiguity of its expressions is not, of course, a feature of natural languages, but every syntactically and semantically ambiguous expression of such languages may be treated as a schema representing all of its interpretations that are unambiguous expressions.
Źródło:
Bulletin of the Section of Logic; 2020, 49, 2
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies