Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "aldehyde dehydrogenase" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Salivary aldehyde dehydrogenase - temporal and population variability, correlations with drinking and smoking habits and activity towards aldehydes contained in food
Autorzy:
Giebułtowicz, Joanna
Dziadek, Marta
Wroczyński, Piotr
Woźnicka, Katarzyna
Wojno, Barbara
Pietrzak, Monika
Wierzchowski, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/1040385.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
superoxide dismutase
fluorescence
aldehyde dehydrogenase
aldehydes
nutrition safety
saliva
salivary peroxidase
Opis:
Fluorimetric method based on oxidation of the fluorogenic 6-methoxy-2-naphthaldehyde was applied to evaluate temporal and population variability of the specific activity of salivary aldehyde dehydrogenase (ALDH) and the degree of its inactivation in healthy human population. Analyzed was also its dependence on drinking and smoking habits, coffee consumption, and its sensitivity to N-acetylcysteine. Both the specific activity of salivary ALDH and the degree of its inactivation were highly variable during the day, with the highest activities recorded in the morning hours. The activities were also highly variable both intra- and interpersonally, and negatively correlated with age, and this correlation was stronger for the subgroup of volunteers declaring abstinence from alcohol and tobacco. Moderately positive correlations of salivary ALDH specific activity with alcohol consumption and tobacco smoking were also recorded (rs ~0.27; p=0.004 and rs =0.30; p=0.001, respectively). Moderate coffee consumption correlated positively with the inactivation of salivary ALDH, particularly in the subgroup of non-drinking and non-smoking volunteers. It was found that mechanical stimulation of the saliva flow increases the specific activity of salivary ALDH. The specific activity of the salivary ALDH was strongly and positively correlated with that of superoxide dismutase, and somewhat less with salivary peroxidase. The antioxidant-containing drug N-acetylcysteine increased activity of salivary ALDH presumably by preventing its inactivation in the oral cavity. Some food-related aldehydes, mainly cinnamic aldehyde and anisaldehyde, were excellent substrates of the salivary ALDH3A1 enzyme, while alkenals, particularly those with short chain, were characterized by lower affinity towards this enzyme but high catalytic constants. The protective role of salivary ALDH against aldehydes in food and those found in the cigarette smoke is discussed, as well as its participation in diminishing the effects of alcohol- and smoking-related oxidative stress.
Źródło:
Acta Biochimica Polonica; 2010, 57, 3; 361-368
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Is aldehyde dehydrogenase inhibited by sulfur compounds? In vitro and in vivo studies
Autorzy:
Iciek, Małgorzata
Górny, Magdalena
Bilska-Wilkosz, Anna
Kowalczyk-Pachel, Danuta
Powiązania:
https://bibliotekanauki.pl/articles/1038534.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
aldehyde dehydrogenase
reactive sulfur species
sulfane sulfur
Opis:
Aldehyde dehydrogenase (ALDH) catalyzes the critical step of ethanol metabolism, i.e. transformation of toxic acetaldehyde to acetic acid. It is a redox sensitive protein with the key Cys in its active site. Recently, it has been documented that activity of some proteins can be modified by sulfur-containing molecules called reactive sulfur species leading to the formation of hydro- persulfides. The aim of the present study was to examine whether ALDH activity can be modified in this way. Studies were performed in vitro using yeast ALDH and various reactive sulfur species, including Na2S, GSSH, K2Sx, Na2S2O3, and garlic-derived allyl sulfides. The effect of garlic-derived trisulfide on ALDH activity was also studied in vivo in the rat liver. The obtained results clearly demonstrated that ALDH could be regulated by sulfur species which inhibited its enzymatic activity. The results also suggested that not H2S but polysulfides or hydropersulfides were the oxidizing species responsible for this modification. This process was easily reversible by reducing agents. After the treatment with polysulfides or hydropersulfides the level of protein-bound sulfur increased, while the activity of the enzyme dramatically decreased. Moreover, the study demonstrated that ALDH activity was inhibited in vivo in the rat liver after garlic-derived trisulfide administration. This is the first study reporting the regulation of ALDH activity by sulfane sulfur species and the results suggest that it leads to the inhibition of the enzyme.
Źródło:
Acta Biochimica Polonica; 2018, 65, 1; 125-132
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The activity of class I, II, III and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in the sera of bladder cancer patients
Autorzy:
Orywal, Karolina
Jelski, Wojciech
Werel, Tadeusz
Szmitkowski, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/1038688.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
alcohol dehydrogenase isoenzymes
aldehyde dehydrogenase
bladder cancer
Opis:
Objectives. Studies on alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the sera of patients with malignant neoplasms show that cancer cells in many organs may release ADH isoenzymes into the blood. The aim of this study was to investigate the differences in the activity of ADH isoenzymes and ALDH in the sera of patients with bladder cancer (BCa), and with different grades of the disease. Material and Methods. Blood samples were taken from 39 patients with BCa (15 patients with low-grade and 24 with high-grade BCa) and from 60 healthy subjects. Class III and IV of ADH and total ADH activity were measured using the photometric method, while class I and II ADH and ALDH activity using the fluorometric method with class-specific fluorogenic substrates. Results. The activity of the class I ADH isoenzyme and total ADH was significantly higher in the sera of BCa patients as compared to control group. Analysis of ALDH activity did not show statistically significant differences between the tested groups. Significantly higher total activity of ADH in comparison to control was found in both, low-grade and high-grade BCa group. The activity of ADH class I was also significantly higher in high-grade BCa group when compared to low-grade patients and controls. Conclusion. The increase of total ADH activity in the sera of BCa patients seems to be caused by isoenzymes released from cancerous cells. The higher activity of ADH I probably resulted from metastatic tumors as significant increase was detected only in the sera of high-grade bladder cancer patients.
Źródło:
Acta Biochimica Polonica; 2017, 64, 1; 81-84
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tiuram – pyły
Thiram
Autorzy:
Struciński, P.
Powiązania:
https://bibliotekanauki.pl/articles/138324.pdf
Data publikacji:
2006
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
tiuram
disulfid tetrametylotiuramu
narażenie zawodowe
alergia skóry
inhibicja dehydrogenazy aldehydowej
najwyższe dopuszczalne stężenie (NDS)
thiram
tetramethylthiuram disulfide
occupational exposure
allergic contact dermatitis
aldehyde dehydrogenase inhibition
maximum allowable concentration (occupational exposure limit)
Opis:
Tiuram (disulfid tetrametylotiuramu) jest związkiem chemicznym należącym do grupy ditiokarbaminianów występującym w postaci bezbarwnego lub żółtawego proszku. Jest stosowany przede wszystkim w przemyśle chemicznym jako tzw. przyspieszacz wukanizacji przy produkcji gumy oraz w rolnictwie jako składnik preparatów grzybobójczych (fungicydów). Ma on również wiele innych zastosowań, m.in. jako: składnik antyseptycz-nych mydeł i aerozoli, środek przeciwświerzbowy, dodatek do farb i lakierów oraz aktywator w produkcji tworzyw sztucznych czy chemosterylant w opatrunkach i plastikowych urządzeniach medycznych. Z dostępnych danych wynika, że tiuram nie jest produkowany w Polsce, niemniej jednak jest on wykorzystywany w krajowym przemyśle chemicznym (głównie gumowym) oraz jako składnik formułowanych w kraju chemicznych środków ochrony roślin. W dostępnym piśmiennictwie doniesienia na temat toksycznego działania tiuramu u ludzi są bardzo nieliczne, nie ma też danych umożliwiających ustalenie zależności dawka-efekt u osób narażonych zawodowo. Obserwowane skutki narażenia ostrego obejmują: bóle głowy, nudności i wymioty, zaburzenia rytmu serca, podrażnienie górnych dróg oddechowych i oczu, a podczas narażenia przewlekłego dochodzą też objawy neurologiczne. Czę-to w następstwie zatrucia pojawiają się objawy zapalenia skóry, pokrzywka i wypryski skórne. W badaniach dodatkowych stwierdza się uszkodzenie wątroby. Tiuram jako metylowy analog disulfiramu blokuje metabolizm alkoholu etylowego, prowadząc do powstania objawów, tzw. „szoku disulfiramowego”. W ostatnich latach coraz więcej uwagi przywiązuje się do wywoływania przez tiuram alergii skóry oraz oczu na skutek narażenia inhalacyjne-go, a także kontaktu z przedmiotami wykonanymi z tworzyw zawierających tiuram (np. rękawiczki lateksowe). Tiuram jest związkiem wykazującym stosunkowo niewielką toksyczność ostrą, niezależnie od drogi podania. Wartości LD50 przy podaniu per os dla szczurów i myszy sięgają nawet 4000 mg/kg m.c. Koty i owce są znacz-nie bardziej wrażliwe na toksyczne działanie pojedynczych dawek tiuramu niż gryzonie; wartość medialnej dawki śmiertelnej wynosi około 200 mg/kg m.c. W przypadku narażenia dermalnego, wartości LD50 na ogół przekraczają 2000 mg/kg m.c. Ogromna większość dostępnych danych z badań toksyczności przewlekłej tiuramu pochodzi z eksperymentów paszowych. Wśród obserwowanych skutków dominowały objawy neurologiczne, zmniejszenie tempa przyrostu masy ciała, zmiany parametrów hematologicznych, uszkodzenie oraz zmiany morfologiczne nerek, wątroby i innych narządów. Wartości NOAEL wyznaczone w długoterminowych badaniach na różnych gatunkach zwierząt wynoszą 0,4 ÷ 5 mg/kg m.c. W badaniach in vitro tiuram wykazuje umiarkowane działanie mutagenne zarówno bez udziału aktywacji meta-bolicznej, jak i z jej udziałem. Wyniki genotoksyczności w modelach doświadczalnych in vivo przyniosły wyni-ki ujemne. Tiuram w badaniach na zwierzętach nie wykazuje działania rakotwórczego. Zwiększenie się częstości występowania nowotworów jamy nosowej u szczurów stwierdzono jedynie przy łącznym narażeniu na tiuram i azotan (III) sodu, co było związane z powstaniem w organizmie zwierząt rakotwórczej N-nitrozodimetylo-aminy. Tiuram został zaklasyfikowany przez ekspertów IARC do grupy 3. Udowodnione działanie embriotok-syczne i teratogenne ujawniało się po podaniu dużych, toksycznych dla matek dawek. Wykazano też, że tiuram niekorzystnie wpływa na rozrodczość zwierząt doświadczalnych, oddziałując na proces spermatogenezy u sam-ców, a także zaburzając cykl rujowy u samic. Tiuram łatwo wchłania się do organizmu przez układ oddechowy i pokarmowy. Ulega on szybkiemu metaboli-zmowi i jest wydalany głównie z wydychanym powietrzem i z moczem. Wśród jego metabolitów są m.in. disiarczek węgla i kwas dimetylotiokarbaminianowy (lub jego aniony), które są współodpowiedzialne za obserwowa-ne skutki toksycznego działania tiuramu. Mechanizm toksycznego działania tiuramu jest wielokierunkowy. Wynika on m.in. z jego zdolności do chelatowania metali i związanych z tym zdolności do hamowania aktywności enzymów (m.in. β-hydroksylazy dopaminy). Jest on również odpowiedzialny za zaburzanie metabolizmu wę-glowodanów i alkoholi (inhibicja dehydrogenazy aldehydowej) oraz gospodarki wapniowej organizmu. Działa również hepatotoksycznie, niszcząc struktury błon komórkowych hepatocytów oraz wpływa na aktywność różnych form molekularnych cytochromu P-450. Proponowaną wartość najwyższego dopuszczalnego stężenia (NDS) tiuramu równą 0,5 mg/m3 wyliczono na podstawie wyników dwóch eksperymentów paszowych przeprowadzonych na psach rasy beagle. Uzyskane w tych doświadczeniach wartości NOAEL uśredniono, a następnie przeliczono na równoważne dla człowieka stężenie tego związku w powietrzu i podzielono przez sumaryczny współczynnik niepewności. Wartość ta jest równa dotychczas obowiązującemu w Polsce normatywowi higienicznemu. Ze względu na brak działania draż-niącego tiuramu, proponowanie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) nie znaj-duje uzasadnienia. Biorąc pod uwagę właściwości tiuramu, proponuje się utrzymanie dotychczasowego oznakowania substancji w wykazie NDS literami: „A“ – substancja o działaniu uczulającym, „Ft” – substancja działająca toksycznie na płód oraz „I“ – substancja o działaniu drażniącym.
Thiram (tetramethylthiuram disulfide) is a dithiocarbamate compound widely used as an agricultural fungicide, accelerator in the rubber industry, seed disinfectant, a lubricating oil additive, animal repellent, and ingredient of medicated soaps and antiseptic sprays. Currently the compound is not manufactured in Poland, but it is used in the chemical industry and in agriculture. Thiram has a low toxicity to humans and laboratory animals – studies have reported oral LD50 for rodents as high as 4000 mg/kg b.w., but for cats and sheep only 200 mg/kg b.w. Dermal LD50 values usually exceed 2000 mg/kg b.w. The following manifestations were reported in humans exposed to thiram: skin irritation with erythema and urticaria, conjunctivitis, mucous membrane irritation, upper respiratory tract irritation, ocular irritation, coughing, headache and fatigue. Chronic exposure to thiram may lead to liver and neurological dysfunction and anaemia. It is worth noting that thiram is a potent inhibitor of aldehyde dehydrogenase and, thus, induces alcohol intolerance like Antabuse (disulfiram). Recently, the debate has intensified because of the growing number of allergic contact dermatitis cases caused by thiram present in products like latex gloves. Most assays have shown that thiram does not elicit genotoxic and carcinogenic action. It has been classified by the International Agency for Research on Cancer (IARC) into group 3. Only high, maternally toxic doses cause embryotoxic and teratogenic activity of thiram. The substance impairs laboratory animals’ fertility by disrupting the hormonal control of ovulation and affecting the spermatogenesis. Thiram is easily absorbed by respiratory and gastrointestinal tracts, distributed in all organs and rapidly eliminated from the body. The recommended maximum exposure limit (MAC) for thiram of 0.5 mg/m3 is based on two NOAEL values (0.4 and 0.04 mg/m3) derived from chronic feeding studies in beagles and relevant uncertainty factors. No STEL and BEI values have been proposed. The substance has “I” (irritant), “A” (sensitizer) and “Ft” (fetotoxic) notations.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2006, 3 (49); 145-180
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies