Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "airless tire" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Evaluation of the energy harvestable from an airless tire equipped with piezoelectric bimorphs on the lamellar spokes
Autorzy:
Suciu, C. V.
Koyanagi, K.
Powiązania:
https://bibliotekanauki.pl/articles/307907.pdf
Data publikacji:
2013
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
airless tire
bending and buckling
energy harvesting
generated electrical power
piezoelectric bimorph
spoke
Opis:
In this work, one evaluates the electrical power generated by an airless tire equipped with piezoelectric bimorphs on both lateral surfaces of the radially distributed lamellar spokes. Such sheet-like spokes are hinged both toward the wheel drum at the inner annular band, and toward the wheel tread at the outer annular band. Since the hinged spokes are able to transmit tension forces but unable to transmit compression forces, bending and buckling of the spokes occur in the region of contact between the tire and the road. Models for the rolling friction of the airless tire, for the bending and buckling deformation of the spokes, and for the electrical power generated by the airless tire are suggested. Variation of the curvature radii and bending deformations for the spokes in the region of contact with the road are illustrated for various values of the rolling friction coefficient and spoke length. Then, variation of the generated electrical power versus the length of contact is obtained for various travel speeds of the vehicle. One observes that the generated electrical power increases at augmentation of the rolling friction coefficient, spoke length and travel speed. Although the obtained electrical power for the proposed harvesting system is relatively modest, it is not depending on the road roughness, i.e. harvesting becomes possible even on smooth roads, such as highway surfaces.
Źródło:
Journal of Telecommunications and Information Technology; 2013, 4; 79-84
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Energy consumption estimation of non-pneumatic tire and pneumatic tire during rolling
Autorzy:
Jackowski, J.
Wieczorek, M.
Żmuda, M.
Powiązania:
https://bibliotekanauki.pl/articles/243543.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
non-pneumatic tire
NPT
airless tire
resilient tire
pneumatic tire
special wheel
rolling resistance
energy consumption during rolling
opona niepneumatyczna
opona bezpowietrzna
opona sprężysta
opona pneumatyczna
opory toczenia
zużycie energii podczas walcowania
Opis:
The characteristics of the car tire, and especially its deformation and interaction road, are mainly factors affected the energy consumption of the vehicle and consequently the amount of fuel consumption and emissions to the environment the harmful exhaust gas components. It is estimated that approximately 80-90% of the total energy losses (rolling resistance) are due to internal tire friction, which occurs during its deformation, the remaining 10-20% are ventilation losses, tread face interaction with the road surface and cyclical compression and expansion of air enclosed in the tire. Non-pneumatic tires (NPT) (as a direction of development) are the alternative solutions for conventional tires. Their advantages are as follows maintenance-free and the resistance to typical for pneumatic tires mechanical damages can be a major cause of their widespread use in future (and thus electric) cars. In the available publications, the results of the estimation of the features NPT based on numerical simulations are only presented. There is lack of experimental research results concerning real objects, which determine their driving properties. Presented work is an attempt to check how the change in wheel structure affects the energy consumption of rolling wheels. Research objects (non-pneumatic tire and pneumatic tire) were selected for the size and destination compatibility. Experimental research were carried out at a universal quasi-static tire testing station, which is located at the Institute of Mechanical Vehicles and Transport at the Department of Mechanical at the Military University of Technology. According to the authors, the obtained results can be an interesting and unique supplement to the problem of assessing the properties of new and future (non-pneumatic tire) construction of vehicle wheels.
Źródło:
Journal of KONES; 2018, 25, 1; 159-168
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies