Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "adaptive differential evolution" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Fabric Defect Detection and Classifier via Multi-Scale Dictionary Learning and an Adaptive Differential Evolution Optimized Regularization Extreme Learning Machine
Wykrywanie defektów tkaniny i ich klasyfikacja poprzez zastosowanie maszyny uczącej się (ADE-RELM)
Autorzy:
Zhou, Zhiyu
Wang, Chao
Gao, Xu
Zhu, Zefei
Hu, Xudong
Zheng, Xiao
Jiang, Likai
Powiązania:
https://bibliotekanauki.pl/articles/233999.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
defect detection
multi-scale dictionary learning
regularisation extreme learning machine
adaptive differential evolution
defekty tkaniny
skuteczność wykrywania defektów
maszyna ucząca się
Opis:
To develop an automatic detection and classifier model for fabric defects, a novel detection and classifier technique based on multi-scale dictionary learning and the adaptive differential evolution algorithm optimised regularisation extreme learning machine (ADE-RELM) is proposed. Firstly in order to speed up dictionary updating under the condition of guaranteeing dictionary sparseness, k-means singular value decomposition (KSVD) dictionary learning is used. Then multi-scale KSVD dictionary learning is presented to extract texture features of textile images more accurately. Finally a unique ADE-RELM is designed to build a defect classifier model. In the training ADE-RELM classifier stage, a self-adaptive mutation operator is used to solve the parameter setting problem of the original differential evolution algorithm, then the adaptive differential evolution algorithm is utilised to calculate the optimal input weights and hidden bias of RELM. The method proposed is committed to detecting common defects like broken warp, broken weft, oil, and the declining warp of grey-level and pure colour fabrics. Experimental results show that compared with the traditional Gabor filter method, morphological operation and local binary pattern, the method proposed in this paper can locate defects precisely and achieve high detection efficiency.
W celu opracowania automatycznego modelu wykrywania i klasyfikowania defektów tkanin, zaproponowano nowatorską technikę wykrywania i klasyfikowania opartą na zastosowaniu maszyny uczącej się (ADE-RELM). Proponowana metoda ma na celu wykrywanie powszechnych defektów, takich jak przerwana osnowa i wątek oraz zabrudzenia po oleju. Wyniki eksperymentalne pokazują, że w porównaniu z tradycyjną metodą filtrów Gabora, operacją morfologiczną i lokalnym wzorcem binarnym, proponowana w artykule metoda pozwala na precyzyjne zlokalizowanie defektów i osiąga wysoką skuteczność ich wykrywania.
Źródło:
Fibres & Textiles in Eastern Europe; 2019, 1 (133); 67-77
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Self-Adaptive Differential Evolution with Hybrid Rules of Perturbation for Dynamic Optimization
Autorzy:
Trojanowski, K.
Raciborski, M.
Kaczyński, P.
Powiązania:
https://bibliotekanauki.pl/articles/308439.pdf
Data publikacji:
2011
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
adaptive differential evolution
dynamic optimization
symmetric a-stable distribution
Opis:
In this paper an adaptive differential evolution approach for dynamic optimization problems is studied. A new benchmark suite Syringa is also presented. The suite allows to generate test-cases from a multiple number of dynamic optimization classes. Two dynamic benchmarks: Generalized Dynamic Benchmark Generator (GDBG) and Moving Peaks Benchmark (MPB) have been simulated in Syringa and in the presented research they were subject of the experimental research. Two versions of adaptive differential evolution approach, namely the jDE algorithm have been heavily tested: the pure version of jDE and jDE equipped with solutions mutated with a new operator. The operator uses a symmetric ?-stable distribution variate for modification of the solution coordinates.
Źródło:
Journal of Telecommunications and Information Technology; 2011, 4; 20-30
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A study on the synchronization behaviour of differential evolution and a self-adaptive extension
Autorzy:
Santucci, V.
Milani, A.
Vella, F.
Powiązania:
https://bibliotekanauki.pl/articles/91840.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
synchronization
behaviour
differential evolution
DE
self-adaptive
extension
state of the art
adaptive DE
Opis:
Differential Evolution (DE) is a popular and efficient continuous optimization technique based on the principles of Darwinian evolution. Asynchronous Differential Evolution is a DE generalization that allows to regulate the synchronization mechanism of the algorithm by tuning two additional parameters. This paper, after providing a further experimental analysis of the impact of the DE synchronization scheme on the evolution, introduces three self-adaptive techniques to handle the synchronization parameters. Moreover the integration of these new regulatory synchronization techniques into state-of-the-art (self) adaptive DE schemes are also proposed. Experiments on widely accepted benchmark problems show that the new schemes are able to improve performances of the state-of-theart (self) adaptive DEs by introducing the new synchronization parameters in the online automated tuning process.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 4; 279-301
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of strategy adaptation on differential evolution in presence and absence of parameter adaptation: an investigation
Autorzy:
Dawar, D.
Ludwig, S. A.
Powiązania:
https://bibliotekanauki.pl/articles/91882.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
evolutionary algorithms
differential evolution
mutation strategy
adaptive control
Opis:
Differential Evolution (DE) is a simple, yet highly competitive real parameter optimizer in the family of evolutionary algorithms. A significant contribution of its robust performance is attributed to its control parameters, and mutation strategy employed, proper settings of which, generally lead to good solutions. Finding the best parameters for a given problem through the trial and error method is time consuming, and sometimes impractical. This calls for the development of adaptive parameter control mechanisms. In this work, we investigate the impact and efficacy of adapting mutation strategies with or without adapting the control parameters, and report the plausibility of this scheme. Backed with empirical evidence from this and previous works, we first build a case for strategy adaptation in the presence as well as in the absence of parameter adaptation. Afterwards, we propose a new mutation strategy, and an adaptive variant SA-SHADE which is based on a recently proposed self-adaptive memory based variant of Differential evolution, SHADE. We report the performance of SA-SHADE on 28 benchmark functions of varying complexity, and compare it with the classic DE algorithm (DE/Rand/1/bin), and other state-of-the-art adaptive DE variants including CoDE, EPSDE, JADE, and SHADE itself. Our results show that adaptation of mutation strategy improves the performance of DE in both presence, and absence of control parameter adaptation, and should thus be employed frequently.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 3; 211-235
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies