Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "abrasion loss" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Technology of Production of Mold Filling Material for Specific Purposes in the Field of Metallic Foam Casting
Autorzy:
Kroupová, Ivana
Bašistová, Martina
Lichý, Petr
Merta, Václav
Radkovský, Filip
Jezierski, Jan
Powiązania:
https://bibliotekanauki.pl/articles/28099598.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
molding mixture
metallic foams
precursor
abrasion loss
3-point bending strength
Opis:
This paper describes the technology for the production of precursors (space holder material) used to form the complex internal structure of cast metal foam. The precursor material must exhibit sufficient refractoriness, resist contact with liquid metal and at the same time should exhibit good collapsibility after casting. With regard to the greening of foundry production, the focus of this paper was on materials that could exhibit the above properties and at the same time do not have a negative impact on the environment. In this paper, the technology for the production of spherical precursors from a self-hardening mixture with a geopolymer-based binder system is described and verified. The motivation for the choice of material and all the sub-steps of the process - molding into the core box, tumbling, including the necessary accompanying tests of the mechanical properties of the core mixture being verified - are described.
Źródło:
Archives of Metallurgy and Materials; 2023, 68, 2; 757--763
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of Los Angeles abrasion value (LAAV) and magnesium sulphate soundness (Mwl) of rock aggregates using gene expression programming and artificial neural networks
Autorzy:
Köken, Ekin
Powiązania:
https://bibliotekanauki.pl/articles/2203333.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
kruszywa skalne
sztuczna sieć neuronowa
siarczan magnezu
rock aggregates
aggregate properties
Los Angeles abrasion loss
magnesium sulphate soundness
gene expression programming
artificial neural network
Opis:
It has been acknowledged that two important rock aggregate properties are the Los Angeles abrasion value (LAAV) and magnesium sulphate soundness (M wl). However, the determination of these properties is relatively challenging due to special sampling requirements and tedious testing procedures. In this study, detailed laboratory studies were carried out to predict the LAAV and M wl for 25 different rock types located in NW Turkey. For this purpose, mineralogical, physical, mechanical, and aggregate properties were determined for each rock type. Strong predictive models were established based on gene expression programming (GEP) and artificial neural network (ANN) methodologies. The performance of the proposed models was evaluated using several statistical indicators, and the statistical analysis results demonstrated that the ANN-based proposed models with the correlation of determination (R2) value greater than 0.98 outperformed the other predictive models established in this study. Hence, the ANN-based predictive models can reliably be used to predict the LAAV and M wl for the investigated rock types. In addition, the suitability of the investigated rock types for use in bituminous paving mixtures was also evaluated based on the ASTM D692/D692M standard. Accordingly, most of the investigated rock types can be used in bituminous paving mixtures. In conclusion, it can be claimed that the proposed predictive models with their explicit mathematical formulations are believed to save time and provide practical knowledge for evaluating the suitability of the rock aggregates in pavement engineering design studies in NW Turkey.
Źródło:
Archives of Mining Sciences; 2022, 67, 3; 401--422
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies