Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Współliniowość" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Drzewa klasyfikacyjne w medycynie
Classification trees in medicine
Autorzy:
Owczarek, Aleksander J.
Powiązania:
https://bibliotekanauki.pl/articles/1035042.pdf
Data publikacji:
2014
Wydawca:
Śląski Uniwersytet Medyczny w Katowicach
Tematy:
drzewa klasyfikacyjne
proces decyzyjny
współliniowość zmiennych
dane
niepełne
classification trees
decision process
multicollinearity
missing data
Opis:
The paper presents the use of computerized diagnostic decision support systems for medical diagnostics in medicine. The structure of a classical decision tree and the advantages and disadvantages of using classification trees have been discussed. Moreover, the paper deals with the effect of classification trees with respect to other classic statistical methods, such as discriminant analysis and logistic regression, taking into account the problem of variable multicollinearity and the problem of the occurrence of so-called missing data. Additionally, some examples of the application of classification trees in medicine have been shown.
W pracy zaprezentowano wykorzystanie w medycynie komputerowych systemów diagnostyki medycznej. Przedstawiono budowę klasycznego drzewa decyzyjnego oraz zalety i wady stosowania drzew klasyfikacyjnych. Ponadto omówiono działanie drzew klasyfikacyjnych w świetle innych klasycznych metod statystycznych, takich jak analiza dyskryminacyjna czy regresja logistyczna, z uwzględnieniem problemu współliniowości zmiennych czy problemu występowania tzw. danych niepełnych. Podano wybrane przykłady zastosowania drzew klasyfikacyjnych w medycynie.
Źródło:
Annales Academiae Medicae Silesiensis; 2014, 68, 6; 449-456
1734-025X
Pojawia się w:
Annales Academiae Medicae Silesiensis
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model regresji grzbietowej i jego wykorzystanie do oceny ryzyka inwestycyjnego - przypadek rynku metali
Ridge regression model and its application in investment risk assessment - the case of metals market
Autorzy:
Krężołek, Dominik
Powiązania:
https://bibliotekanauki.pl/articles/590856.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Model regresji
Regresja grzbietowa
Rynek metali
Ryzyko
Współliniowość
Co-linearity
Metals market
Regression model
Ridge regression
Risk
Opis:
Modele regresji są powszechnie wykorzystywanymi narzędziami statystyki, a także innych nauk ilościowych, służącymi do wykrywania związków w obrębie analizowanych danych oraz do prowadzenia predykcji wielkości zestawu zmiennych objaśnianych na podstawie realizacji zestawu zmiennych objaśniających. Istnieje wiele metod umożliwiających szacowanie nieznanych parametrów modeli regresji, m.in. MNK, MNW, MM, jednakże nie zawsze uzyskane estymatory spełniają wymagane założenia (co do swoich własności oraz co do własności modelu). Istotny stopień współliniowości uniemożliwia właściwe wnioskowanie na podstawie modeli klasycznych. W artykule podjęto próbę wykorzystania regresji grzbietowej do modelowania ryzyka inwestycji na rynku metali. Model wykorzystuje parametr kary, umożliwiający redukcję zmiennych współliniowych, a tym samym uzyskanie prostszej postaci funkcji regresji. Dodatkowo zmniejsza się obciążenie oraz wariancja estymatorów parametrów modelu.
Regression models are commonly used statistical tool (and other quantitative sciences), which allows for modelling relations within analyzed datasets. One of their most important features is the prediction property. In the literature there are a lot of methods for estimating unknown parameters of regression models, e.g. Maximum Likelihood, Ordinary Least Squares etc., but estimated parameters not always meet the required assumptions (regarding their properties itself and the properties of selected model). Colinearity between data prevents from correct inferring using classical models. The aim of the article is the application of ridge regression model in risk assessment on the metals market. The model uses so-called penalty parameter allowing for elimination of co-linear variables and makes the model more simpler. Additionally, the bias of the estimators and their variances reduce.
Źródło:
Studia Ekonomiczne; 2016, 288; 21-32
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Do multi-factor models produce robustresults? Econometric and diagnostic issues in equity risk premia study
Analiza diagnostyczna wieloczynnikowych modeli oszacowań premii za ryzyko akcyjne
Autorzy:
Sakowski, Paweł
Ślepaczuk, Robert
Wywiał, Mateusz
Powiązania:
https://bibliotekanauki.pl/articles/585858.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Asset pricing models
Autocorrelation
Collinearity
Diagnostics
Econometric
Equity risk premia
General Methods of Moments (GMM)
Heteroscedasticity
Maximum Likelihood Estimation (MLE)
Multi-factor models
Normality
Ordinary Least Squares (OLS)
Outliers
Autokorelacja
Diagnostyka modeli
Heteroskedastyczność
Metoda najmniejszych kwadratów
Metoda największej wiarygodności
Modele wieloczynnikowe
Modele wyceny aktywów
Obserwacje odstające
Premia za ryzyko akcyjne
Uogólniona metoda momentów
Współliniowość
Opis:
In recent decades numerous studies verified empirical validity of the CAPM model. Many of them showed that CAPM alone is not able to explain cross-sectional variation of stock returns. Researchers revealed various risk factors which explained outperformance of given groups of stocks or proposed modifications to existing multi-factor models. Surprisingly, we hardly find any discussion in financial literature about potential drawbacks of applying standard OLS method to estimate parameters of such models. Yet, the question of robustness of OLS results to invalid assumptions shouldn't be ignored. This article aims to address diagnostic and econometric issues which can influence results of a time-series multifactor model. Based on the preliminary results of a five-factor model for 81 emerging and developed equity indices [Sakowski, Ślepaczuk and Wywiał, 2016a] obtained with OLS we check the robustness of these results to popular violations of OLS assumptions. We find autocorrelation of error term, heteroscedasticity and ARCH effects for most of 81 regressions and apply an AR-GARCH model using MLE to remove them. We also identify outliers and diagnose collinearity problems. Additionally, we apply GMM to avoid strong assumption of IID error term. Finally, we present comparison of parameters estimates and Rsquared values obtained by three different methods of estimation: OLS, MLE and GMM. We find that results do not differ substantially between these three methods and allow to draw the same conclusions from the investigated five-factor model.
W ostatnich latach liczne prace podejmowały temat empirycznej weryfikacji skuteczności modelu CAPM. Ich autorzy zaproponowali co najmniej kilka czynników ryzyka, które są w stanie wyjaśnić zróżnicowanie przekrojowe zwrotów rozmaitych aktywów finansowych. Zaproponowano także liczne modyfikacje istniejących modeli wieloczynnikowych. W bogatej literaturze rzadko jednak spotykamy dyskusję na temat konsekwencji stosowania standardowej Metody Najmniejszych Kwadratów do oszacowania parametrów tych modeli. Pytanie o odporność oszacowań wieloczynnikowych modeli wyceny aktywów finansowych uzyskanych za pomocą MNK na niespełnienie założeń nie powinno być jednak ignorowane. Celem niniejszego artykułu jest analiza diagnostyczna wyników oszacowań modelu pięcioczynnikowego dla 81 indeksów giełdowych [Sakowski, Ślepaczuk i Wywiał, 2016a]. Weryfikacja założeń modelu wskazuje na obecność autokorelacji i heteroskedastyczności czynnika losowego, a także występowanie efektów ARCH. Analiza obejmuje także identyfikację obserwacji wpływowych oraz weryfikację obecności współliniowości wśród czynników. W końcowej części prezentujemy porównanie oszacowań uzyskanych za pomocą Metody Najmniejszych Kwadratów, Metody Największej Wiarygodności oraz Uogólnionej Metody Momentów. Wszystkie trzy metody dają bardzo zbliżone oszacowania i pozwalają wyciągnąć ten sam zestaw wniosków dla analizowanego modelu pięcioczynnikowego.
Źródło:
Studia Ekonomiczne; 2016, 301; 203-227
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies