Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wright convex function" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Multivalent Harmonic Functions defined by m-tuple Integral operators
Autorzy:
Sharma, Poonam
Powiązania:
https://bibliotekanauki.pl/articles/745994.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Multivalent Harmonic starlike (convex) functions
Erdélyi-Kober integral operator
Hohlov operator
Carlson and Shaffer operator
convolution
Wright generalized hypergeometric function
Gauss hypergeometric function
incomplete beta function
Opis:
In this paper a multivalent harmonic function is defined by m-tuple integral operators and some classes of these multivalent harmonic functions are studied in terms of inequalities involving Wright generalized hypergeometric functions. Some special cases of our results are also mentioned.
Źródło:
Commentationes Mathematicae; 2010, 50, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Conjugate functions, lp-norm like functionals, the generalized Hölder inequality, Minkowski inequality and subhomogeneity
Autorzy:
Matkowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/255030.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Lp-norm like functional
homogeneity
subhomogeneity
subadditivity
Minkowski inequality
Hölder inequality
converses
generalization of the Minkowski and Hölder inequalities
conjugate functions
complementary functions
Young conjugate functions
convex function
geometrically convex function
Wright convex function
functional equation
Opis:
For h : (0,∞) → R, the function h* (t) := th( 1/t ) is called (*)-conjugate to h. This conjugacy is related to the Hölder and Minkowski inequalities. Several properties of (*)-conjugacy are proved. If φ and φ* are bijections of (0,∞) then [formula]. Under some natural rate of growth conditions at 0 and ∞, if φ is increasing, convex, geometrically convex, then [formula] has the same properties. We show that the Young conjugate functions do not have this property. For a measure space (Ω,Σ,μ) denote by S = (Ω,Σ,μ) the space of all μ-integrable simple functions x : Ω → R, Given a bijection φ : (0,∞) → (0,∞) define [formula] by [formula] where Ω(x) is the support of x. Applying some properties of the (*) operation, we prove that if ƒ xy ≤ Pφ(x)Pψ (y) where [formula] and [formula] are conjugate, then φ and ψ are conjugate power functions. The existence of nonpower bijections φ and ψ with conjugate inverse functions [formula] such that Pφ and Pψ are subadditive and subhomogeneous is considered.
Źródło:
Opuscula Mathematica; 2014, 34, 3; 523-560
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterizations and decomposition of strongly wright-convex functions of higher order
Autorzy:
Gilányi, A.
Merentes, N.
Nikodem, K.
Páles, Z.
Powiązania:
https://bibliotekanauki.pl/articles/952781.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
generalized convex function
Wright convex function of higher order
strongly convex function
Opis:
Motivated by results on strongly convex and strongly Jensen-convex functions by R. Ger and K. Nikodem in [Strongly convex functions of higher order, Nonlinear Anal. 74 (2011), 661-665] we investigate strongly Wright-convex functions of higher order and we prove decomposition and characterization theorems for them. Our decomposition theorem states that a function / is strongly Wright-convex of order n if and only if it is of the form [formula], where g is a (continuous) n-convex function and p is a polynomial function of degree n. This is a counterpart of Ng's decomposition theorem for Wright-convex functions. We also characterize higher order strongly Wright-convex functions via generalized derivatives.
Źródło:
Opuscula Mathematica; 2015, 35, 1; 37-46
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies