- Tytuł:
- Weyls theorem for algebraically k-quasiclass a operators
- Autorzy:
-
Gao, F.
Fang, X. - Powiązania:
- https://bibliotekanauki.pl/articles/256003.pdf
- Data publikacji:
- 2012
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
algebraically k-quasiclass A operator
Weyl's theorem
alpha-Weyl's theorem - Opis:
- If T or T* is an algebraically k-quasiclass A operator acting on an infinite dimensional separable Hilbert space and F is an operator commuting with T, and there exists a positive integer n such that Fn has a finite rank, then we prove that Weyl's theorem holds for ∫ (T)+F for every ∫∈ H(σ (T)), where H(σ (T)) denotes the set of all analytic functions in a neighborhood of σ (T). Moreover, if T* is an algebraically k-quasiclass A operator, then α-Weyl's theorem holds for ∫(T). Also, we prove that if T or T* is an algebraically k-quasiclass A operator then both the Weyl spectrum and the approximate point spectrum of T obey the spectral mapping theorem for every ∫∈ H(σ (T)).
- Źródło:
-
Opuscula Mathematica; 2012, 32, 1; 125-135
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki