Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "WTA network" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Comparison of different hardware realizations of the winner takes all neural network
Porównanie różnych sprzętowych realizacji sztucznej sieci neuronowej typu winner takes all
Autorzy:
Talaśka, T.
Przedwojski, P.
Dalecki, J.
Długosz, R.
Powiązania:
https://bibliotekanauki.pl/articles/389786.pdf
Data publikacji:
2010
Wydawca:
Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich. Wydawnictwo PB
Tematy:
WTA network
digital neural networks
analog neural networks
microcontroller
low energy consumption
sieć typu WTA
cyfrowe sieci neuronowe
analogowe sieci neuronowe
mikrokontrolery
niski pobór energii
Opis:
This paper presents realization and the laboratory tests of the Kohonen winner takes all (WTA) neural network (NN) realized on microcontrollers (μC) with the AVR and ARM CortexM3 cores, as well as the comparison with the full custom implementation of analog network of this type in the CMOS technology. The two μCs have been placed on a single testing board to facilitate the comparison. The board allows for switching between the two μCs, it enables selection of either the Euclidean (L2) or the Manhattan (L1) distance measures. It also allows for turning on/off the so-called conscience mechanism. Some signals illustrating the training of the network can be observed directly on the board. The full learning process with all essential parameters can be viewed on PC using the USB port. The prospective application of the system is in on-line analysis of the ECG and EMG biomedical signals in the health care diagnostic systems, as well as in the student laboratories on neural networks and programmable devices.
W pracy przedstawiono projekt oraz wyniki badań laboratoryjnych sieci neuronowej Kohonena typu Winner Takes All (WTA) zaimplementowanej na mikrokontrolerach z rdzeniami AVR oraz ARM. W pracy przedstawiono też porównanie z wcześniejszą realizacją podobnej sieci jako specjalizowany analogowy układ scalony. Dwa mikrokontrolery, na których zaimplementowano algorytm uczący umieszczone zostały na jednej płytce testowej aby umożliwić bezpośrednie porównanie ich parametrów. Za pomocą przełączników umieszczonych bezpośrednio na płytce możliwe jest wybranie jednego z mikrokontrolerów, jednej z dwóch miar podobieństwa między wektorami (Euklidesa L2 lub typu Manhattan L1) oraz włączenie lub wyłączenie mechanizmu sumienia. Niektóre sygnały przedstawiające proces uczenia (sygnału sygnalizującego zwycięski neuron) możemy bezpośrednio obserwować na płytce. Proces uczenia możemy też w całości obserwować na komputerze PC, poprzez złącze USB. Do potencjalnych zastosowań wykonanej płytki testowej oraz sprzętowych realizacji sieci neuronowej należą systemy do ciągłego monitoringu zdrowia pacjentów (obserwacja oraz analiza sygnałów typu EKG oraz EMG), a także jako wyposażenie laboratorium studenckiego.
Źródło:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy; 2010, 13; 67-78
1899-0088
Pojawia się w:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network segmentation of images from stained cucurbits leaves with colour symptoms of biotic and abiotic stresses
Autorzy:
Gocławski, J.
Sekulska-Nalewajko, J.
Kuźniak, E.
Powiązania:
https://bibliotekanauki.pl/articles/330961.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
segmentacja obrazu
przestrzeń koloru
przetwarzanie morfologiczne
progowanie obrazu
sztuczna sieć neuronowa
ochrona roślin
image segmentation
colour space
morphological processing
image thresholding
artificial neural network
WTA learning
Widrow-Hoff learning
Cucurbita species
plant stress
ROS detection
Opis:
The increased production of Reactive Oxygen Species (ROS) in plant leaf tissues is a hallmark of a plant's reaction to various environmental stresses. This paper describes an automatic segmentation method for scanned images of cucurbits leaves stained to visualise ROS accumulation sites featured by specific colour hues and intensities. The leaves placed separately in the scanner view field on a colour background are extracted by thresholding in the RGB colour space, then cleaned from petioles to obtain a leaf blade mask. The second stage of the method consists in the classification of within mask pixels in a hue-saturation plane using two classes, determined by leaf regions with and without colour products of the ROS reaction. At this stage a two-layer, hybrid artificial neural network is applied with the first layer as a self-organising Kohonen type network and a linear perceptron output layer (counter propagation network type). The WTA-based, fast competitive learning of the first layer was improved to increase clustering reliability. Widrow-Hoff supervised training used at the output layer utilises manually labelled patterns prepared from training images. The generalisation ability of the network model has been verified by K-fold cross-validation. The method significantly accelerates the measurement of leaf regions containing the ROS reaction colour products and improves measurement accuracy.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 3; 669-684
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies