Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "U-bending" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Analiza sprężynowania blach tytanowych w procesach gięcia
The analysis of springback of titanium sheet after bending
Autorzy:
Winowiecka, J.
Powiązania:
https://bibliotekanauki.pl/articles/211568.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Obróbki Plastycznej
Tematy:
sprężynowanie
V-gięcie
U-gięcie
materiały tytanowe
springback
V-bending
U-bending
titanium materials
Opis:
W pracy zostały przedstawione rezultaty badań nad zjawiskiem sprężynowania powrotnego, występującym w procesach U- i V-gięcia. Sprężynowanie powrotne jest zdefiniowane jako geometryczna zmiana kształtu części po odciążeniu. W procesach gięcia po formowaniu materiał próbuje powrócić do swojego pierwotnego kształtu. Zjawisko sprężynowania uwarunkowane jest występowaniem odkształceń sprężystych w materiale. Sprężynowanie jest jednym z podstawowym czynników wpływających na jakość i dokładność tłoczonych części. Prawidłowe określenie sprężynowania wymaga uwzględnienia czynników, które mogą wpływać na wielkość omawianego zjawiska. Badania doświadczalne przeprowadzono dla próbek wykonanych z dwóch gatunków czystego tytanu technicznego Grade 2 i Grade 4 oraz stopu Grade 5 (Ti-6Al-4V). Dla narzędzia rzeczywistego wykonano odpowiadający mu model numeryczny, który posłużył do symulacji w programie PAMSTAMP 2G v2012. Otrzymane wyniki badań doświadczalnych porównano z wartościami uzyskanymi z obliczeń numerycznych. Na podstawie eksperymentów i symulacji numerycznych określono wpływ właściwości mechanicznych badanych materiałów oraz wybranych parametrów procesu na wielkość zjawiska sprężynowania. W pracy analizowano również wpływ metod obliczeń numerycznych na zmianę kształtu części po odciążeniu.
In the paper results of studies about phenomena of springback occurring U- and V-bending process are presented. Springback is defined as geometrical change of a part after forming process is finished, when the forces from forming tools are removed. For bending processes after forming the part attempts to return to its original shape and this phenomena is caused by elastic strains occurring in the forming material. Springback is one of the fundamental factors influencing the quality and accuracy of the stamped components. Correct determination of springback requires taking into account all factors that influence it. The experimental studies were performed for specimens made of commercially pure titanium Grade 2, Grade 4, and titanium alloy Grade 5 (Ti-6Al-4V). Based on real tool the corresponding numerical model was made using program PAMSTAMP 2G v2012. The actual results were compared with values obtained from the numerical calculations. Based on experiments and numerical simulations the impact of material properties of titanium specimens on springback was determined. In the paper a significance of select the type of process solutions on change of the parts shape was investigate.
Źródło:
Obróbka Plastyczna Metali; 2013, 24, 3; 219-232
0867-2628
Pojawia się w:
Obróbka Plastyczna Metali
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characteristics of a New Test RIG and Methodology for Cyclic Testing of Gear Tooth Bending Fatigue Strength
Charakterystyka nowego stanowiska oraz metodyka pulsacyjnego badania wytrzymałości zmęczeniowej zębów kół zębatych na złamanie
Autorzy:
Tuszyński, Waldemar
Gibała, Michał
Kalbarczyk, Marek
Matras, Eugeniusz
Michalczewski, Remigiusz
Piekoszewski, Witold
Sotowski, Zbigniew
Szczerek, Marian
Wulczyński, Jan
Wieczorek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/189666.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
pulsator
gear
tooth fracture
S-N curve
nominal stress number (bending)
koło zębate
złamanie zęba u podstawy
krzywa S-N
granica zmęczenia
Opis:
Tooth fracture is the most dangerous form of gear wear that excludes the gear from further use. In order to counteract the occurrence of this type of damage, it is very important to properly design the toothed gear. To calculate the gear tooth bending strength, a strength parameter called the nominal stress number σFlim is necessary. ISO 6336-5:2003(E) and available material databases provide σFlim values for the most popular engineering materials used for gears, including those for case-hardened steels. There is, however, no data for a new generation of nanostructured engineering materials, which are the subject of research conducted at the Tribology Department of ITeE – PIB. The σFlim parameter is most often determined in cyclic fatigue tests on toothed gears with specially selected tooth geometry. In order to determine the above strength parameter, a pulsator (symbol T-32) was developed and manufactured at ITeE-PIB in Radom. The article presents a new device, research methodology, and the results of verification tests for case-hardened steel 18CrNiMo7-6, confirming the correctness of the adopted design assumptions and the developed research methodology. The results of tooth bending fatigue tests are the basis for the selection of a new engineering material dedicated to gears, which later undergoes tribological testing.
Złamanie zęba u podstawy jest najbardziej niebezpieczną formą zużycia kół zębatych wykluczającą je z dalszej eksploatacji. W celu przeciwdziałania wystąpieniu tego rodzaju uszkodzenia bardzo istotne jest właściwe zaprojektowanie koła zębatego. Do obliczeń wytrzymałościowych kół zębatych na złamanie zęba niezbędny jest parametr wytrzymałościowy zwany granicą zmęczenia σFlim. Norma ISO 6336–5:2003(E), a także dostępne bazy materiałowe podają wartości σFlim dla najbardziej popularnych materiałów wykorzystywanych na koła zębate, w tym dla stali nawęglanych. Brak jest jednak jakichkolwiek danych dla nowej generacji nanostrukturalnych materiałów konstrukcyjnych, które są przedmiotem badań prowadzonych w Zakładzie Tribologii ITeE – PIB. Parametr σFlim wyznacza się najczęściej w badaniach pulsacyjnych na kołach zębatych o specjalnie dobranej geometrii uzębienia. W celu wyznaczenia powyższego parametru wytrzymałościowego w ITeE – PIB w Radomiu opracowano i wytworzono pulsator (o symbolu T–32). W artykule przedstawiono nowe urządzenie, metodykę badawczą oraz wyniki badań weryfikacyjnych dla stali konstrukcyjnej 17HNM – nawęglanej i hartowanej, potwierdzające poprawność przyjętych założeń konstrukcyjnych i opracowanej metodyki badawczej. Wyniki badań zmęczeniowych stanowią podstawę wyboru nowego materiału konstrukcyjnego dedykowanego na koła zębate, które później poddaje się przekładniowym badaniom tribologicznym.
Źródło:
Tribologia; 2019, 283, 1; 57-65
0208-7774
Pojawia się w:
Tribologia
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies