Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Total graph" wg kryterium: Temat


Tytuł:
Edge colorings and total colorings of integer distance graphs
Autorzy:
Kemnitz, Arnfried
Marangio, Massimiliano
Powiązania:
https://bibliotekanauki.pl/articles/743555.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
integer distance graph
chromatic number
choice number
chromatic index
choice index
total chromatic number
total choice number
Opis:
An integer distance graph is a graph G(D) with the set Z of integers as vertex set and two vertices u,v ∈ Z are adjacent if and only if |u-v| ∈ D where the distance set D is a subset of the positive integers N. In this note we determine the chromatic index, the choice index, the total chromatic number and the total choice number of all integer distance graphs, and the choice number of special integer distance graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 149-158
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A note on total colorings of planar graphs without 4-cycles
Autorzy:
Wang, Ping
Wu, Jian-Liang
Powiązania:
https://bibliotekanauki.pl/articles/744436.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
total coloring
planar graph
list coloring
girth
Opis:
Let G be a 2-connected planar graph with maximum degree Δ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is Δ +1 if (Δ,k) ∈ {(7,4),(6,5),(5,7),(4,14)}.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 1; 125-135
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Total edge irregularity strength of trees
Autorzy:
Ivančo, Jaroslav
Jendrol', Stanislav
Powiązania:
https://bibliotekanauki.pl/articles/743612.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph labelling
tree
irregularity strength
total labellings
total edge irregularity strength
Opis:
A total edge-irregular k-labelling ξ:V(G)∪ E(G) → {1,2,...,k} of a graph G is a labelling of vertices and edges of G in such a way that for any different edges e and f their weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The minimum k for which a graph G has a total edge-irregular k-labelling is called the total edge irregularity strength of G, tes(G). In this paper we prove that for every tree T of maximum degree Δ on p vertices
tes(T) = max{⎡(p+1)/3⎤,⎡(Δ+1)/2⎤}.
Źródło:
Discussiones Mathematicae Graph Theory; 2006, 26, 3; 449-456
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some totally 4-choosable multigraphs
Autorzy:
Woodall, Douglas
Powiązania:
https://bibliotekanauki.pl/articles/743409.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
maximum average degree
planar graph
total choosability
list total colouring
Opis:
It is proved that if G is multigraph with maximum degree 3, and every submultigraph of G has average degree at most 2(1/2) and is different from one forbidden configuration C⁺₄ with average degree exactly 2(1/2), then G is totally 4-choosable; that is, if every element (vertex or edge) of G is assigned a list of 4 colours, then every element can be coloured with a colour from its own list in such a way that no two adjacent or incident elements are coloured with the same colour. This shows that the List-Total-Colouring Conjecture, that ch''(G) = χ''(G) for every multigraph G, is true for all multigraphs of this type. As a consequence, if G is a graph with maximum degree 3 and girth at least 10 that can be embedded in the plane, projective plane, torus or Klein bottle, then ch''(G) = χ''(G) = 4. Some further total choosability results are discussed for planar graphs with sufficiently large maximum degree and girth.
Źródło:
Discussiones Mathematicae Graph Theory; 2007, 27, 3; 425-455
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Partitioning a graph into a dominating set, a total dominating set, and something else
Autorzy:
Henning, Michael
Löwenstein, Christian
Rautenbach, Dieter
Powiązania:
https://bibliotekanauki.pl/articles/744065.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
total domination
domatic number
vertex partition
Petersen graph
Opis:
A recent result of Henning and Southey (A note on graphs with disjoint dominating and total dominating set, Ars Comb. 89 (2008), 159-162) implies that every connected graph of minimum degree at least three has a dominating set D and a total dominating set T which are disjoint. We show that the Petersen graph is the only such graph for which D∪T necessarily contains all vertices of the graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 4; 563-574
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intersection graph of gamma sets in the total graph
Autorzy:
Chelvam, T.
Asir, T.
Powiązania:
https://bibliotekanauki.pl/articles/743214.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
total graph
gamma sets
intersection graph
Hamiltonian
coloring
connectivity
domination number
Opis:
In this paper, we consider the intersection graph $I_{Γ}(ℤₙ)$ of gamma sets in the total graph on ℤₙ. We characterize the values of n for which $I_{Γ}(ℤₙ)$ is complete, bipartite, cycle, chordal and planar. Further, we prove that $I_{Γ}(ℤₙ)$ is an Eulerian, Hamiltonian and as well as a pancyclic graph. Also we obtain the value of the independent number, the clique number, the chromatic number, the connectivity and some domination parameters of $I_{Γ}(ℤₙ)$.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 2; 341-356
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On total vertex irregularity strength of graphs
Autorzy:
Muthu Guru Packiam, K.
Kathiresan, Kumarappan
Powiązania:
https://bibliotekanauki.pl/articles/743655.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph labeling
irregularity strength
total assignment
vertex irregular total labeling
Opis:
Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 1; 39-45
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fractional (\( \mathcal{P} , \mathcal{Q} \))-Total List Colorings of Graphs
Autorzy:
Kemnitz, Arnfried
Mihók, Peter
Voigt, Margit
Powiązania:
https://bibliotekanauki.pl/articles/30146708.pdf
Data publikacji:
2013-03-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph property
total coloring
(P,Q)-total coloring
fractional coloring
fractional (P,Q)-total chromatic number
circular coloring
circular (P,Q)-total chromatic number
list coloring
(P,Q)-total (a
b)-list colorings
Opis:
Let $ r, s \in \mathbb{N}$, $r \ge s$, and \( \mathcal{P} \) and \( \mathcal{Q} \) be two additive and hereditary graph properties. A \( (P,Q) \)-total $(r, s)$-coloring of a graph $G = (V,E)$ is a coloring of the vertices and edges of $G$ by $s$-element subsets of $ \mathbb{Z}_r$ such that for each color $i$, $0 \le i \le r − 1$, the vertices colored by subsets containing $i$ induce a subgraph of $G$ with property \( \mathcal{P} \), the edges colored by subsets containing $i$ induce a subgraph of $G$ with property \( \mathcal{Q} \), and color sets of incident vertices and edges are disjoint. The fractional \( (\mathcal{P}, \mathcal{Q})\)-total chromatic number $ \chi_{f,P,Q}^{''}(G)$ of $G$ is defined as the infimum of all ratios $r//s$ such that $G$ has a \( ( \mathcal{P}, \mathcal{Q})\)-total $(r, s)$-coloring. A \( ( \mathcal{P}, \mathcal{Q} \)-total independent set $ T = V_T \cup E_T \subseteq V \cup E$ is the union of a set $V_T$ of vertices and a set $E_T$ of edges of $G$ such that for the graphs induced by the sets $V_T$ and $E_T$ it holds that \( G[ V_T ] \in \mathcal{ P } \), \( G[ E_T ] \in \mathcal{Q} \), and $ G[ V_T ] $ and $ G[ E_T ] $ are disjoint. Let \( T_{ \mathcal{P} , \mathcal{Q} } \) be the set of all \( (\mathcal{P} ,\mathcal{Q})\)-total independent sets of $G$. Let $L(x)$ be a set of admissible colors for every element $ x \in V \cup E $. The graph $G$ is called \( (\mathcal{P} , \mathcal{Q}) \)-total $(a, b)$-list colorable if for each list assignment $L$ with $|L(x)| = a$ for all $x \in V \cup E$ it is possible to choose a subset $ C(x) \subseteq L(x)$ with $|C(x)| = b$ for all $ x \in V \cup E$ such that the set $ T_i $ which is defined by $ T_i = {x \in V \cup E : i \in C(x) } $ belongs to \( T_{ \mathcal{P},\mathcal{Q}}\) for every color $i$. The \( (\mathcal{P}, \mathcal{Q})\)- choice ratio \( \text{chr}_{\mathcal{P},\mathcal{Q}}(G)\) of $G$ is defined as the infimum of all ratios $a//b$ such that $G$ is \( (\mathcal{P},\mathcal{Q})\)-total $(a, b)$-list colorable. We give a direct proof of \( \chi_{ f,\mathcal{P},\mathcal{Q} }^{ \prime \prime } (G) = \text{chr}_{ \mathcal{P} ,\mathcal{Q} }(G)\) for all simple graphs $G$ and we present for some properties \( \mathcal{P} \) and \( \mathcal{Q} \) new bounds for the \( (\mathcal{P}, \mathcal{Q})\)-total chromatic number and for the \((\mathcal{P},\mathcal{Q})\)-choice ratio of a graph $G$.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 1; 167-179
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Total Graph of Mycielski Graphs, Central Graphs and Their Covering Numbers
Autorzy:
Patil, H.P.
Pandiya Raj, R.
Powiązania:
https://bibliotekanauki.pl/articles/30146583.pdf
Data publikacji:
2013-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
total graph
central graph
middle graph
Mycielski graph
independence number
covering number
edge independence number
edge covering number
chromatic number
achromatic number
Opis:
The technique of counting cliques in networks is a natural problem. In this paper, we develop certain results on counting of triangles for the total graph of the Mycielski graph or central graph of star as well as completegraph families. Moreover, we discuss the upper bounds for the number of triangles in the Mycielski and other well known transformations of graphs. Finally, it is shown that the achromatic number and edge-covering number of the transformations mentioned above are equated.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 2; 361-371
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Supermagic Graphs Having a Saturated Vertex
Autorzy:
Ivančo, Jaroslav
Polláková, Tatiana
Powiązania:
https://bibliotekanauki.pl/articles/30147220.pdf
Data publikacji:
2014-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
supermagic graph
saturated vertex
vertex-magic total labeling
Opis:
A graph is called supermagic if it admits a labeling of the edges by pairwise different consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we establish some conditions for graphs with a saturated vertex to be supermagic. Inter alia we show that complete multipartite graphs K1,n,n and K1,2,...,2 are supermagic.
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 1; 75-84
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The irregularity of graphs under graph operations
Autorzy:
Abdo, Hosam
Dimitrov, Darko
Powiązania:
https://bibliotekanauki.pl/articles/30148232.pdf
Data publikacji:
2014-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
irregularity of graphs
total irregularity of graphs
graph operations
Zagreb indices
Opis:
The irregularity of a simple undirected graph $G$ was defined by Albertson [5] as $irr(G) = ∑_{uv∈E(G)} |dG(u) − dG(v)|$, where $d_G(u)$ denotes the degree of a vertex $u ∈ V (G)$. In this paper we consider the irregularity of graphs under several graph operations including join, Cartesian product, direct product, strong product, corona product, lexicographic product, disjunction and symmetric difference. We give exact expressions or (sharp) upper bounds on the irregularity of graphs under the above mentioned operations
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 2; 263-278
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Note on the Total Detection Numbers of Cycles
Autorzy:
Escuadro, Henry E.
Fujie, Futaba
Musick, Chad E.
Powiązania:
https://bibliotekanauki.pl/articles/31339492.pdf
Data publikacji:
2015-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
vertex-distinguishing coloring
detectable labeling
detection number
total detection number
Hamiltonian graph
Opis:
Let G be a connected graph of size at least 2 and c :E(G)→{0, 1, . . ., k− 1} an edge coloring (or labeling) of G using k labels, where adjacent edges may be assigned the same label. For each vertex v of G, the color code of v with respect to c is the k-vector code(v) = (a0, a1, . . ., ak−1), where ai is the number of edges incident with v that are labeled i for 0 ≤ i ≤ k − 1. The labeling c is called a detectable labeling if distinct vertices in G have distinct color codes. The value val(c) of a detectable labeling c of a graph G is the sum of the labels assigned to the edges in G. The total detection number td(G) of G is defined by td(G) = min{val(c)}, where the minimum is taken over all detectable labelings c of G. We investigate the problem of determining the total detection numbers of cycles.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 2; 237-247
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Note on Total Graphs
Autorzy:
Forouhandeh, S.F.
Jafari Rad, N.
Vaqari Motlagh, B.H.
Patil, H.P.
Pandiya Raj, R.
Powiązania:
https://bibliotekanauki.pl/articles/31339326.pdf
Data publikacji:
2015-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
total graph
central graph
middle graph
Mycielski graph
Opis:
Erratum Identification and corrections of the existing mistakes in the paper On the total graph of Mycielski graphs, central graphs and their covering numbers, Discuss. Math. Graph Theory 33 (2013) 361-371.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 3; 585-587
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized Fractional and Circular Total Colorings of Graphs
Autorzy:
Kemnitz, Arnfried
Marangio, Massimiliano
Mihók, Peter
Oravcová, Janka
Soták, Roman
Powiązania:
https://bibliotekanauki.pl/articles/31339338.pdf
Data publikacji:
2015-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph property
(P,Q)-total coloring
circular coloring
fractional coloring
fractional (P,Q)-total chromatic number
circular (P,Q)- total chromatic number
Opis:
Let \( \mathcal{P} \) and \( \mathcal{Q} \) be additive and hereditary graph properties, $ r, s \in \mathbb{N}$, $ r \ge s $, and $ [\mathbb{Z}_r]^s $ be the set of all s-element subsets of $\mathbb{Z}_r $. An ($r$, $s$)-fractional (\( \mathcal{P} \),\( \mathcal{Q} \))-total coloring of $G$ is an assignment $ h : V (G) \cup E(G) \rightarrow [\mathbb{Z}_r]^s $ such that for each $ i \in \mathbb{Z}_r $ the following holds: the vertices of $G$ whose color sets contain color $i$ induce a subgraph of $G$ with property \( \mathcal{P} \), edges with color sets containing color $i$ induce a subgraph of $G$ with property \( \mathcal{Q} \), and the color sets of incident vertices and edges are disjoint. If each vertex and edge of $G$ is colored with a set of $s$ consecutive elements of $ \mathbb{Z}_r $ we obtain an ($r$, $s$)-circular (\( \mathcal{P} \),\( \mathcal{Q} \))-total coloring of $G$. In this paper we present basic results on ($r$, $s$)-fractional/circular (\( \mathcal{P} \),\( \mathcal{Q} \))-total colorings. We introduce the fractional and circular (\( \mathcal{P} \),\( \mathcal{Q}\))-total chromatic number of a graph and we determine this number for complete graphs and some classes of additive and hereditary properties.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 3; 517-532
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weak Total Resolvability In Graphs
Autorzy:
Casel, Katrin
Estrada-Moreno, Alejandro
Fernau, Henning
Rodríguez-Velázquez, Juan Alberto
Powiązania:
https://bibliotekanauki.pl/articles/31341108.pdf
Data publikacji:
2016-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
metric dimension
resolving set
weak total metric dimension
weak total resolving set
adjacency dimension
graph operations
Opis:
A vertex v ∈ V (G) is said to distinguish two vertices x, y ∈ V (G) of a graph G if the distance from v to x is di erent from the distance from v to y. A set W ⊆ V (G) is a total resolving set for a graph G if for every pair of vertices x, y ∈ V (G), there exists some vertex w ∈ W − {x, y} which distinguishes x and y, while W is a weak total resolving set if for every x ∈ V (G)−W and y ∈ W, there exists some w ∈ W −{y} which distinguishes x and y. A weak total resolving set of minimum cardinality is called a weak total metric basis of G and its cardinality the weak total metric dimension of G. Our main contributions are the following ones: (a) Graphs with small and large weak total metric bases are characterised. (b) We explore the (tight) relation to independent 2-domination. (c) We introduce a new graph parameter, called weak total adjacency dimension and present results that are analogous to those presented for weak total dimension. (d) For trees, we derive a characterisation of the weak total (adjacency) metric dimension. Also, exact figures for our parameters are presented for (generalised) fans and wheels. (e) We show that for Cartesian product graphs, the weak total (adjacency) metric dimension is usually pretty small. (f) The weak total (adjacency) dimension is studied for lexicographic products of graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 1; 185-210
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies