Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Supervised classification" wg kryterium: Temat


Tytuł:
„Śmieci na wejściu, śmieci na wyjściu”. Wpływ jakości koderów na działanie sieci neuronowej klasyfikującej wypowiedzi w mediach społecznościowych
„Garbage in, Garbage out”. The Impact of Coders’ Quality on the Neural Network Classifying Text on Social Media
Autorzy:
Matuszewski, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/2131910.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sieci neuronowe
klasyfikacja danych tekstowych
modele nadzorowane
opinion mining
jakość koderów
text classification
neural networks
supervised models
quality of coders
Opis:
Jedna z głównych decyzji przy ręcznym kodowaniu danych tekstowych dotyczy tego, czy kodowanie ma być weryfikowane. W przypadku modeli nadzorowanych prowadzi to do istotnego dylematu: czy lepszym rozwiązaniem jest dostarczenie modelowi dużej liczby przypadków, na których będzie się uczyć kosztem weryfikacji poprawności danych, czy też zakodowanie każdego przypadku n-razy, co pozwoli porównać kody i sprawdzić ich poprawność, ale jednocześnie n-krotnie zmniejszy zbiór danych treningowych. Taka decyzja może zaważyć nie tylko na ostatecznych wynikach klasyfikatora. Z punktu widzenia badaczy jest istotna również dlatego, że – realistycznie zakładając, że badania mają ograniczone źródło finansowania – nie można jej cofnąć. Wykorzystując 100 tys. unikatowych i ręcznie zakodowanych tweetów przeprowadzono symulacje wyników klasyfikatora w zależności od kontrolowanego odsetka błędnie zakodowanych dokumentów. Na podstawie danych przedstawiono rekomendacje.
One of the critical decisions when manually coding text data is whether to verify the coders’ work. In the case of supervised models, this leads to a significant dilemma: is it better to provide the model with a large number of cases on which it will learn at the expense of verifying the correctness of the data, or whether it is better to code each case n-times, which will allow to compare the codes and check their correctness but at the same time will reduce the training dataset by n-fold. Such a decision not only affect the final results of the classifier. From the researchers’ point of view, it is also crucial because, realistically assuming that research has limited funding, it cannot be undone. The study uses a simulation approach and provides conclusions and recommendations based on 100,000 unique and hand-coded tweets.
Źródło:
Studia Socjologiczne; 2022, 2; 137-164
0039-3371
Pojawia się w:
Studia Socjologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A k-Nearest Neighbors Method for Classifying User Sessions in E-Commerce Scenario
Autorzy:
Suchacka, G.
Skolimowska-Kulig, M.
Potempa, A.
Powiązania:
https://bibliotekanauki.pl/articles/308645.pdf
Data publikacji:
2015
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
data mining
e-commerce
k-Nearest Neighbors
k-NN
log file analysis
online store
R-project
supervised classification
web mining
Web store
Web traffic
Web usage mining
Opis:
This paper addresses the problem of classification of user sessions in an online store into two classes: buying sessions (during which a purchase confirmation occurs) and browsing sessions. As interactions connected with a purchase confirmation are typically completed at the end of user sessions, some information describing active sessions may be observed and used to assess the probability of making a purchase. The authors formulate the problem of predicting buying sessions in a Web store as a supervised classification problem where there are two target classes, connected with the fact of finalizing a purchase transaction in session or not, and a feature vector containing some variables describing user sessions. The presented approach uses the k-Nearest Neighbors (k-NN) classification. Based on historical data obtained from online bookstore log files a k-NN classifier was built and its efficiency was verified for different neighborhood sizes. A 11-NN classifier was the most effective both in terms of buying session predictions and overall predictions, achieving sensitivity of 87.5% and accuracy of 99.85%.
Źródło:
Journal of Telecommunications and Information Technology; 2015, 3; 64-69
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A sorting method for coal and gangue based on surface grayness and glossiness
Metoda sortowania węgla i skały płonnej na podstawie szarości i połysku powierzchni
Autorzy:
Cheng, Gang
Wei, Yifan
Chen, Jie
Pan, Zeye
Powiązania:
https://bibliotekanauki.pl/articles/27311660.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
surface glossiness
gangue recognition
image recognition
supervised classification
grey wolf algorithm
support vector machine
połysk powierzchni
rozpoznawanie skały płonnej
rozpoznawanie obrazu
klasyfikacja nadzorowana
algorytm szarych wilków
maszyna wektorów nośnych
Opis:
Sorting coal and gangue is important in raw coal production; accurately identifying coal and gangue is a prerequisite for effectively separating coal and gangue. The method of extracting coal and gangue using image grayscale information can effectively identify coal and gangue, but the recognition rate of the sorting process based on image grayscale information needs to substantially higher than that which is needed to meet production requirements. A sorting method of coal and gangue using object surface grayscale-gloss characteristics is proposed to improve the recognition rate of coal and gangue. Using different comparative experiments, bituminous coal from the Huainan area was used as the experimental object. It was found that the number of pixel points corresponding to the highest level grey value of the grayscale moment and illumination component of the coal and gangue images were combined into a total discriminant value and used as input for the best classification of coal and gangue using the GWO-SVM classification model. The recognition rate could reach up to 98.14%. This method sorts coal and gangue by combining surface greyness and glossiness features, optimizes the traditional greyness-based recognition method, improves the recognition rate, makes the model generalizable, enriches the research on coal and gangue recognition, and has theoretical and practical significance in enterprise production operations.
Sortowanie węgla i skały płonnej jest ważne w produkcji węgla surowego; dokładna identyfikacja węgla i skały płonnej jest warunkiem wstępnym skutecznego oddzielenia tych surowców. Metoda rozdzielenia węgla i skały płonnej przy użyciu informacji w skali szarości obrazu może skutecznie identyfikować węgiel i skałę płonną, ale stopień rozpoznawania procesu sortowania w oparciu o te informacje być znacznie wyższy niż wymagany do spełnienia wymagań produkcyjnych. W artykule zaproponowano metodę sortowania węgla i skały płonnej wykorzystującą charakterystykę połysku i skali szarości powierzchni obiektu w celu poprawy szybkości rozpoznawania węgla i skały płonnej. W badaniach wykorzystano próbki węgla kamiennego z obszaru Huainan. Stwierdzono, że liczbę punktów pikseli odpowiadającą najwyższemu poziomowi szarości momentu w skali szarości i składowej oświetlenia obrazów węgla i skały płonnej połączono w całkowitą wartość dyskryminującą i wykorzystano jako dane wejściowe dla najlepszej klasyfikacji węgla i skały płonnej przy użyciu modelu klasyfikacji GWO-SVM. Wskaźnik rozpoznawalności może osiągnąć nawet 98,14%. Ta metoda sortowania węgla i skały płonnej poprzez połączenie cech szarości i połysku powierzchni, optymalizuje tradycyjną metodę rozpoznawania w oparciu o szarość, poprawia współczynnik rozpoznawania, umożliwia uogólnienie modelu, wzbogaca badania nad rozpoznawaniem węgla i skały płonnej, ma znaczenie teoretyczne i praktyczne w operacjach produkcyjnych przedsiębiorstwa.
Źródło:
Gospodarka Surowcami Mineralnymi; 2023, 39, 3; 173--198
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A strategy learning model for autonomous agents based on classification
Autorzy:
Śnieżyński, B.
Powiązania:
https://bibliotekanauki.pl/articles/330672.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
autonomous agents
strategy learning
supervised learning
classification
reinforcement learning
czynnik niezależny
uczenie nadzorowane
uczenie ze wzmocnieniem
Opis:
In this paper we propose a strategy learning model for autonomous agents based on classification. In the literature, the most commonly used learning method in agent-based systems is reinforcement learning. In our opinion, classification can be considered a good alternative. This type of supervised learning can be used to generate a classifier that allows the agent to choose an appropriate action for execution. Experimental results show that this model can be successfully applied for strategy generation even if rewards are delayed. We compare the efficiency of the proposed model and reinforcement learning using the farmer–pest domain and configurations of various complexity. In complex environments, supervised learning can improve the performance of agents much faster that reinforcement learning. If an appropriate knowledge representation is used, the learned knowledge may be analyzed by humans, which allows tracking the learning process.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 3; 471-482
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Accuracy assessment of automatic image processing for land cover classification of St. Petersburg protected area
Ocena dokładności automatycznej klasyfikacji pokrycia terenu dla obszaru chronionego Sankt Petersburga
Autorzy:
Bogoliubova, A.
Tymków, P.
Powiązania:
https://bibliotekanauki.pl/articles/341513.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Przyrodniczy we Wrocławiu
Tematy:
overall accuracy
automatic image processing
protected area
land cover/use
supervised classification
dokładność całkowita klasyfikacji
automatyczne przetwarzanie obrazów
obszary chronione
klasyfikacja pokrycia/użytkowania terenu
klasyfikacja nadzorowana
Opis:
This study analyzes the evaluation of land cover supervised classification quality. Authors put forward the hypothesis that the overall accuracy of image classification depends on its division into parts of the same area. The dependence is described by the logarithmic curve – Т = 4.3004·ln(x) + 72.697, because the determination coefficient is maximum (R2 = 0.9678). The research area was the Yuntolovo reserve, the protected area near St. Petersburg (Russia). In order to increase the overall accuracy of the land cover automatic classification based on aerial images, a new methodology of data preprocessing was introduced. The proposed method of estimating the overall classification accuracy of land cover protected areas increases on average by 10% by dividing the source aerial image into no more than 10 equal parts. With further partitioning of the image into parts of the same area, the overall accuracy is slightly increased. Pixel-based image analysis of supervised classification and error matrix were evaluated using ILWIS 3.31 software and in our own software in .NET environment.
W pracy dokonano analizy sposobów oceny jakości klasyfikacji pokrycia terenu na danych obrazowych. Autorzy wysunęli hipotezę, że ogólna dokładność klasy- fikacji obrazu zależy od jego podziału w procesie klasyfikacji na podobszary. Zależność tę opisano krzywą logarytmiczną Т = 4,3004⋅ln(x) + 72,697, dla której uzyskano najwyższy współczynnik determinacji (R2 = 0,9678). Badania prowadzono dla rezerwatu Yuntolovo, chronionego obszaru w pobliżu Sankt Petersburga (Rosja). W celu zwiększenia ogólnej dokładności automatycznej klasyfikacji pokrycia terenu na podstawie zdjęć lotniczych autorzy zaproponowali nową metodologię wstępnego przetwarzania danych. Proponowana metoda, polegająca na podziale obrazu klasyfikowanego na nie więcej niż dziesięć równych części, poprawia ogólną dokładność klasyfikacji pokrycia obszarów lądowych średnio o 10%. Podział na większą liczbę części nie zwiększa już znacząco jakości klasyfikacji, a dodatkowo wprowadza niejednoznaczności spowodowane zmniejszaniem próby uczącej. Klasyfikację obrazów i analizę dokładności prowadzono z wykorzystaniem pakietu ILWIS 3.31 oraz autorskiego oprogramowania stworzonego w środowisku NET.
Źródło:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum; 2014, 13, 1-2; 5-22
1644-0668
Pojawia się w:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Accuracy Analysis Comparison of Supervised Classification Methods for Mapping Land Cover Using Sentinel 2 Images in the Al‑Hawizeh Marsh Area, Southern Iraq
Autorzy:
Alwan, Imzahim A.
Aziz, Nadia A.
Powiązania:
https://bibliotekanauki.pl/articles/1838006.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
land cover mapping
Sentinel 2
supervised classification
maximum likelihood
Support Vector Machine (SVM)
confusion matrix
Opis:
Land cover mapping of marshland areas from satellite images data is not a simple process, due to the similarity of the spectral characteristics of the land cover. This leads to challenges being encountered with some land covers classes, especially in wetlands classes. In this study, satellite images from the Sentinel 2B by ESA (European Space Agency) were used to classify the land cover of Al Hawizeh marsh/Iraq Iran border. Three classification methods were used aimed at comparing their accuracy, using multispectral satellite images with a spatial resolution of 10 m. The classification process was performed using three different algorithms, namely: Maximum Likelihood Classification (MLC), Artificial Neural Networks (ANN), and Support Vector Machine (SVM). The classification algorithms were carried out using ENVI 5.1 software to detect six land cover classes: deep water marsh, shallow water marsh, marsh vegetation (aquatic vegetation), urban area (built up area), agriculture area, and barren soil. The results showed that the MLC method applied to Sentinel 2B images provides a higher overall accuracy and the kappa coefficient compared to the ANN and SVM methods. Overall accuracy values for MLC, ANN, and SVM methods were 85.32%, 70.64%, and 77.01% respectively.
Źródło:
Geomatics and Environmental Engineering; 2021, 15, 1; 5-21
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of selected supervised classification methods to bank marketing campaign
Autorzy:
Grzonka, D.
Borowik, B.
Suchacka, G.
Powiązania:
https://bibliotekanauki.pl/articles/94739.pdf
Data publikacji:
2016
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
classification
supervised learning
data mining
decision trees
bagging
boosting
random forests
bank marketing
R project
Opis:
Supervised classification covers a number of data mining methods based on training data. These methods have been successfully applied to solve multi-criteria complex classification problems in many domains, including economical issues. In this paper we discuss features of some supervised classification methods based on decision trees and apply them to the direct marketing campaigns data of a Portuguese banking institution. We discuss and compare the following classification methods: decision trees, bagging, boosting, and random forests. A classification problem in our approach is defined in a scenario where a bank’s clients make decisions about the activation of their deposits. The obtained results are used for evaluating the effectiveness of the classification rules.
Źródło:
Information Systems in Management; 2016, 5, 1; 36-48
2084-5537
2544-1728
Pojawia się w:
Information Systems in Management
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial intelligence for supervised classification purposes: Case of the surface water quality in the Moulouya River, Morocco
Autorzy:
Manssouri, Imad
Talhaoui, Abdelghani
El Hmaidi, Abdellah
Boudad, Brahim
Boudebbouz, Bouchra
Sahbi, Hassane
Powiązania:
https://bibliotekanauki.pl/articles/1841945.pdf
Data publikacji:
2021
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
artificial intelligence
environment
supervised classification
the Moulouya River
water quality
Opis:
From a management perspective, water quality is determined by the desired end use. Water intended for leisure, drinking water, and the habitat of aquatic organisms requires higher levels of purity. In contrast, the quality standards of water used for hydraulic energy production are much less important. The main objective of this work is focused on the development of an evaluation system dealing with supervised classification of the physicochemical quality of the water surface in the Moulouya River through the use of artificial intelligence. A graphical interface under Matlab 2015 is presented. The latter makes it possible to create a classification model based on artificial neural networks of the multilayer perceptron type (ANN-MLP). Several configurations were tested during this study. The configuration [9 8 3] retained gives a coefficient of determination close to the unit with a minimum error value during the test phase. This study highlights the capacity of the classification model based on artificial neural networks of the multilayer perceptron type (ANN-MLP) proposed for the supervised classification of the different water quality classes, determined by the calculation of the system for assessing the quality of surface water (SEQ-water) at the level of the Moulouya River catchment area, with an overall classification rate equal to 98.5% and a classification rate during the test phase equal to 100%.
Źródło:
Journal of Water and Land Development; 2021, 50; 240-247
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Basic quantum circuits for classification and approximation tasks
Autorzy:
Wiśniewska, Joanna
Sawerwain, Marek
Obuchowicz, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1838166.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
quantum circuits
data classification
supervised learning
qubits
qudits
układ kwantowy
klasyfikacja danych
uczenie nadzorowane
kubit
Opis:
We discuss a quantum circuit construction designed for classification. The circuit is built of regularly placed elementary quantum gates, which implies the simplicity of the presented solution. The realization of the classification task is possible after the procedure of supervised learning which constitutes parameter optimization of Pauli gates. The process of learning can be performed by a physical quantum machine but also by simulation of quantum computation on a classical computer. The parameters of Pauli gates are selected by calculating changes in the gradient for different sets of these parameters. The proposed solution was successfully tested in binary classification and estimation of basic non-linear function values, e.g., the sine, the cosine, and the tangent. In both the cases, the circuit construction uses one or more identical unitary operations, and contains only two qubits and three quantum gates. This simplicity is a great advantage because it enables the practical implementation on quantum machines easily accessible in the nearest future.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 4; 733-744
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of forests in the Precarpathian region using QuickBird-2 high resolution satellite image
Autorzy:
Babushka, A.
Burshtynska, K.
Denys, Y.
Powiązania:
https://bibliotekanauki.pl/articles/100291.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
supervised classification
divergence
separation of classes
reliability
training sample
niezawodność
dywergencja
szkolenie
klasyfikacja nadzorowana
Opis:
Based on the study of literature relating to the classification of forests using high resolution space images established that the main problem of classification is the separateness classes and close to the spectral brightness classes can not be identified with high accuracy. Classification using maximum likelihood algorithm, which generally gives better results compared with algorithms of spectral distance or Mahalanobis distance, does not lead to the definition of areas with a high probability. Therefore, the article examines approach of classification of forests using post-processing. Experimental studies were carried using an satellite image of the forested area of Precarpathian region obtained from QuickBird-2 (June 2010). Data collected during field research were used as Verification data to determine areas of different objects. The controlled classification has been performed using the method of the maximum likelihood, size of signatures for 8 classes were selected from 100 to 400 points. For these classes was calculated matrix of separation of classes, and was found a significant correlation between next classes: young conifer plantings and pine and mixed forest, and deciduous young plantings and deciduous forest. Post-processing significantly improves the reliability of determination of area, which consists in the assign to all pixel of the selected neighbourhood brightness of most points, although there is a dependency of reliability of determination of area from the size of the area. Accuracy of determination of areas are from 92 to 99%.
Źródło:
Geomatics, Landmanagement and Landscape; 2017, 2; 7-19
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data classification based on photogrammetry
Klasyfikacja danych w oparciu o materiały fotogrametryczne
Autorzy:
Piech, Izabela
Żaba, Tadeusz
Jankowska, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/100599.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
laser scanning
supervised classification
unsupervised classification
aerial image
skaning laserowy
zdjęcie lotnicze
klasyfikacja nadzorowana
klasyfikacja nienadzorowana
Opis:
The aim of the paper was to classify data from aerial laser scanning and CIR digital images, which were orientated, connected and aligned by the Agisoft Photoscan software. Then, in order to distinguish the ground a point cloud was generated. This was to create a correct terrain mesh and, in consequence, an orthophotomap. The next stage is to develop a new point cloud using ArcGIS. The land cover from the images was combined with the ground mapped by LiDAR. New heights were calculated relative to the ground surface height 0. The point cloud was converted into a raster form, providing a normalized Digital Surface Model (nDSM). It was the first element of the output composition, which also consisted of the NIR and RED channels, acquired from the cloud point generated in Agisoft. The colour composition obtained in such way was subjected to four object-oriented and pixel-oriented classification methods: I – ISO Cluster, II – Maximum Likelihood, III – Random Trees, IV – Support Vector Machine. Object grouping is possible due to information stored in the display content. This technique is prompted by human ability of image interpretation. It draws attention to more variables, so effects similar to human perception of reality are possible to achieve. The unsupervised method is based on a process of automatic search for image fragments, which allows assigning them to individual categories by a statistical analysis algorithm. In turn, supervised method uses “training datasets”, which are used to “teach” the program assigning individual or grouped pixels to classes [Benz UC et al., 2004]. The area studied for land development was the Lutowiska municipality, in the Podkarpackie Voivodeship, Bieszczady County. As a result of the classification, 11 classes of terrain features were distinguished: class 0 – road infrastructure, class 1 – roads, class 2 – buildings, class 3 – waters, class 4 – meadows, class 5 – arable lands, class 6 – pastures, class 7 – high vegetation, class 8 – medium vegetation, class 9 – low vegetation, class 10 – quarry. The area of research covers an area of about 28 km2. Aerial images were made in 2015. Field vision and photopoint measurement was carried out in May 2018.
Celem opracowania jest klasyfikacja danych na podstawie lotniczego skaningu laserowego oraz zdjęć cyfrowych CIR. Do opracowania posłużyło oprogramowanie Agisoft Photoscan, w którym dokonano zorientowania, połączenia i wyrównania zdjęć. Następnie wygenerowano z nich chmurę punktów, z której wydzielono grunt. Miało to na celu poprawne utworzenie siatki terenu, a w konsekwencji ortofotomapy. Kolejny etap pracy to utworzenie nowej chmury punktów przy wykorzystaniu programu ArcGIS. Pokrycie terenu ze zdjęć połączono z gruntem z LiDAR. Obliczono nowe wysokości względem powierzchni terenu, któremu nadano wysokość 0. Dokonano konwersji chmury punktów do postaci rastrowej, uzyskując Znormalizowany Numeryczny Model Pokrycia Terenu. Był to pierwszy element kompozycji wyjściowej, która składała się także z kanału NIR oraz RED, pozyskanych z chmury wygenerowanej w Agisoft. Otrzymaną w ten sposób kompozycję barwną poddano czterem metodom klasyfikacji obiektowej i pikselowej: I- ISO Cluster, II- Maximum Likelihood, III- Random Trees, IV- Support Vector Machine. Grupowanie obiektowe jest możliwe dzięki informacji zapisanej w treści zobrazowania. Technika ta wykorzystuje podejście zainspirowane zdolnością interpretacji obrazu przez człowieka. Zwraca uwagę na więcej zmiennych, dzięki czemu można uzyskać efekty zbliżone do postrzegania rzeczywistości przez ludzi. Metoda Unsupervised bazuje na procesie automatycznego wyszukiwania fragmentów obrazu i przyporządkowania ich do poszczególnych kategorii za pomocą algorytmu wykorzystującego analizę statystyczną. Z kolei Supervised wykorzystuje „pola treningowe”, za pomocą których „uczy” program, do której klasy przyporządkować pojedyncze, czy też zgrupowane piksele [Benz U. C. i in., 2004]. Obszarem poddanym analizie jest gmina Lutowiska, w województwie podkarpackim, powiecie bieszczadzkim, na której dokonano analizy zagospodarowania terenu. W wyniku klasyfikacji wyodrębniono 11 klas form terenu: klasa 0- infrastruktura drogowa, klasa 1- drogi, klasa 2- budynki, klasa 3- woda, klasa 4- łąki, klasa 5- grunty orne, klasa 6- pastwiska, klasa 7- roślinność wysoka, klasa 8- średnia roślinność, klasa 9- roślinność niska, klasa 10- kamieniołom. Obszar opracowania stanowi powierzchnię ok. 28 km2. Zobrazowania lotnicze zostały wykonane w 2015r. Wizję terenową oraz pomiar fotopunktów przeprowadzono w maju 2018r.
Źródło:
Geomatics, Landmanagement and Landscape; 2020, 2; 93-110
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detekcja zmian pokrycia terenu na zdjęciach satelitarnych Landsat - porównanie trzech metod
Land cover change detection using Landsat imagery - comparison of three methods
Autorzy:
Niedzielko, J.
Lewiński, S.
Powiązania:
https://bibliotekanauki.pl/articles/132345.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
pokrycie terenu
wykrywanie zmian
Landsat
różnica obrazów
klasyfikacja nadzorowana
analiza głównych składowych
land cover
change detection
image difference
supervised classification
principal components analysis
Opis:
Environmental changes are amongst the most important research subjects in geography. The changes may be natural, but also may be caused by human activity. Land cover is a significant component of the changing environment. Monitoring of its changes involves usage of satellite techniques. Landsat mission provides comparable data since forty years, very useful in land cover studies. Utilization of satellite techniques in such researches is developing quickly. This paper is an example of methods that enable quick and quite accurate assessment of range and spatial distribution of land cover changes. Practical application of image difference, principal component analysis and supervised classification to detect land cover changes is presented. Methods are applied to study area containing different land cover classes. Accuracy of methods was tested and compared. Combining methods presented in earlier researches, five new methods were developed: image difference, image difference with classification, classification, principal component analysis, principal component analysis with classification. Methods were applied to three different input datasets: pairs of images with different level of preprocessing. First dataset was a pair of georeferenced Landsat Thematic Mapper images. The second dataset was the same pair of images, atmospherically corrected using dark object subtraction method. Normalization of one image to the other provided the third dataset. Accuracy assessment was executed. Results were obtained from confusion matrices. Overall accuracy of methods was high, from 77% to 91%. Supervised classification was the most accurate method. Combining fully automatic methods with supervised classification has increased overall accuracy of automatic change detection, however not significantly. Studies on combining change detection methods should be continued. Future studies should concentrate on the automation of change detection process.
Źródło:
Teledetekcja Środowiska; 2012, 47; 87-98
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of land-use changes resulting from shrimp farming on acid sulfate soils in the Can Gio coastal wetland area (Vietnam)
Autorzy:
Tran, Tran Bao
Bui, Ha Manh
Powiązania:
https://bibliotekanauki.pl/articles/762911.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
land use, acid sulfate soils, shrimp farming, supervised classification, soil reclamation
Opis:
Acid sulfate soils in coastal wetland areas are particularly vulnerable to land-use changes. We identifid the potential impacts of land-use changes in the Can Gio coastal wetland area in Vietnam due to the reclamation of acid sulfate soils from shrimp farms. Our study applied the support of vector machine algorithm in ENVI software to observe land-use changes from 1995 to 2015, using Landsat Thematic Mapper and Operational Land Imager data. We classifid the land use of the study area into four major classes including vegetation, bare land, dedicated land and aquaculture land. Our study successfully met the overall classifiation accuracy requirement above 95% and kappa statistics above 0.95. Between 1995 and 2006, about 2,938.05 ha of bare land and 1,464.66 ha of vegetation (mangrove forest) were converted to aquaculture land. In contrast, between 2006 and 2015, 2,423.88 ha of aquaculture land converted back to bare land, mainly related to the abandonment of shrimp ponds due to crop failure and disease. The disturbance of acid sulfate soils through initial soil reclamation and subsequent fallowing is considered a key reason for hastening and extending soil acidifiation in the study area. We collected 144 topsoil samples from 17 fallowed ponds in two batches, and 142 of these were acidic: 128 samples were extremely and strongly acidic (pH < 5.5), 14 samples were moderately and slightly acid (pH between 5.5 and 6.5), and only two samples were neutral (pH over 6.5).
Źródło:
Polish Journal of Soil Science; 2018, 51, 2
0079-2985
Pojawia się w:
Polish Journal of Soil Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forest species mapping using airborne hyperspectral APEX data
Autorzy:
Tagliabue, Giulia
Panigada, Cinzia
Colombo, Roberto
Fava, Francesco
Cilia, Chiara
Baret, Frédéric
Vreys, Kristin
Meuleman, Koen
Rossini, Micol
Powiązania:
https://bibliotekanauki.pl/articles/1035947.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Warszawski. Wydział Geografii i Studiów Regionalnych
Tematy:
Vegetation map
Hyperspectral
Aerial
Supervised classification
Multi-temporal dataset
Forest ecosystem
Opis:
The accurate mapping of forest species is a very important task in relation to the increasing need to better understand the role of the forest ecosystem within environmental dynamics. The objective of this paper is the investigation of the potential of a multi-temporal hyperspectral dataset for the production of a thematic map of the dominant species in the Forêt de Hardt (France). Hyperspectral data were collected in June and September 2013 using the Airborne Prism EXperiment (APEX) sensor, covering the visible, near-infrared and shortwave infrared spectral regions with a spatial resolution of 3 m by 3 m. The map was realized by means of a maximum likelihood supervised classification. The classification was first performed separately on images from June and September and then on the two images together. Class discrimination was performed using as input 3 spectral indices computed as ratios between red edge bands and a blue band for each image. The map was validated using a testing set selected on the basis of a random stratified sampling scheme. Results showed that the algorithm performances improved from an overall accuracy of 59.5% and 48% (for the June and September images, respectively) to an overall accuracy of 74.4%, with the producer’s accuracy ranging from 60% to 86% and user’s accuracy ranging from 61% to 90%, when both images (June and September) were combined. This study demonstrates that the use of multi-temporal high-resolution images acquired in two different vegetation development stages (i.e., 17 June 2013 and 4 September 2013) allows accurate (overall accuracy 74.4%) local-scale thematic products to be obtained in an operational way.
Źródło:
Miscellanea Geographica. Regional Studies on Development; 2016, 20, 1; 28-33
0867-6046
2084-6118
Pojawia się w:
Miscellanea Geographica. Regional Studies on Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Keystroke dynamics analysis using machine learning methods
Autorzy:
Shabliy, Nataliya
Lupenko, Serhii
Lutsyk, Nadiia
Yasniy, Oleh
Malyshevska, Olha
Powiązania:
https://bibliotekanauki.pl/articles/1956034.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
keystroke dynamics analysis
Machine Learning
Neural Network
Supervised Learning
classification problem
analiza dynamiki uderzeń klawiszy
uczenie maszynowe
sieć neuronowa
uczenie nadzorowane
problem klasyfikacji
Opis:
The primary objective of the paper was to determine the user based on its keystroke dynamics using the methods of machine learning. Such kind of a problem can be formulated as a classification task. To solve this task, four methods of supervised machine learning were employed, namely, logistic regression, support vector machines, random forest, and neural network. Each of three users typed the same word that had 7 symbols 600 times. The row of the dataset consists of 7 values that are the time period during which the particular key was pressed. The ground truth values are the user id. Before the application of machine learning classification methods, the features were transformed to z-score. The classification metrics were obtained for each applied method. The following parameters were determined: precision, recall, f1-score, support, prediction, and area under the receiver operating characteristic curve (AUC). The obtained AUC score was quite high. The lowest AUC score equal to 0.928 was achieved in the case of linear regression classifier. The highest AUC score was in the case of neural network classifier. The method of support vector machines and random forest showed slightly lower results as compared with neural network method. The same pattern is true for precision, recall and F1-score. Nevertheless, the obtained classification metrics are quite high in every case. Therefore, the methods of machine learning can be efficiently used to classify the user based on keystroke patterns. The most recommended method to solve such kind of a problem is neural network.
Źródło:
Applied Computer Science; 2021, 17, 4; 75-83
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies