Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Supervised classification" wg kryterium: Temat


Tytuł:
Artificial intelligence for supervised classification purposes: Case of the surface water quality in the Moulouya River, Morocco
Autorzy:
Manssouri, Imad
Talhaoui, Abdelghani
El Hmaidi, Abdellah
Boudad, Brahim
Boudebbouz, Bouchra
Sahbi, Hassane
Powiązania:
https://bibliotekanauki.pl/articles/1841945.pdf
Data publikacji:
2021
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
artificial intelligence
environment
supervised classification
the Moulouya River
water quality
Opis:
From a management perspective, water quality is determined by the desired end use. Water intended for leisure, drinking water, and the habitat of aquatic organisms requires higher levels of purity. In contrast, the quality standards of water used for hydraulic energy production are much less important. The main objective of this work is focused on the development of an evaluation system dealing with supervised classification of the physicochemical quality of the water surface in the Moulouya River through the use of artificial intelligence. A graphical interface under Matlab 2015 is presented. The latter makes it possible to create a classification model based on artificial neural networks of the multilayer perceptron type (ANN-MLP). Several configurations were tested during this study. The configuration [9 8 3] retained gives a coefficient of determination close to the unit with a minimum error value during the test phase. This study highlights the capacity of the classification model based on artificial neural networks of the multilayer perceptron type (ANN-MLP) proposed for the supervised classification of the different water quality classes, determined by the calculation of the system for assessing the quality of surface water (SEQ-water) at the level of the Moulouya River catchment area, with an overall classification rate equal to 98.5% and a classification rate during the test phase equal to 100%.
Źródło:
Journal of Water and Land Development; 2021, 50; 240-247
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ korekcji atmosferycznej zdjęć satelitarnych na wyniki cyfrowej klasyfikacji wielospektralnej
The influence of atmosferic correction of satelity images on results
Autorzy:
Osińska-Skotak, K.
Powiązania:
https://bibliotekanauki.pl/articles/341395.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Przyrodniczy we Wrocławiu
Tematy:
korekcja atmosferyczna
klasyfikacja wielospektralna
zdjęcia wielospektralne
atmospheric correction
supervised classification
multispectral classification
Opis:
Na promieniowanie dochodzące do sensora satelitarnego wpływa przede wszystkim atmosfera, znajdująca się na drodze od obiektu do detektora. Korekcja atmosferyczna jest jednak na ogół pomijana w procesie przetwarzania zdjęć satelitarnych. Wynika to m.in. z faktu, iż aby wpływ atmosfery oszacować w sposób poprawny, wymagana jest duża liczba danych pomiarowych i skomplikowany model atmosfery. W przypadku analizy zdjęć archiwalnych uzyskanie tego rodzaju danych często jest utrudnione, a czasami wręcz niemożliwe. Stosuje się więc na ogół tzw. średnie atmosfery klimatyczne, które charakteryzują średnie warunki atmosferyczne panujące na danym terenie. Wymóg wykonywania korekcji atmosferycznej zdjęć satelitarnych nie zawsze występuje (np. analizy jakościowe, interpretacja wizualna), ale w przypadku przeprowadzania analiz ilościowych lub wieloczasowych uwzględnienie wpływu atmosfery jest czynnikiem istotnym dla uzyskania prawidłowych wyników. Niniejsze opracowanie prezentuje wyniki badań nad wpływem uwzględnienia korekcji atmosferycznej w procesie klasyfikacji wielospektralnej. Okazuje się, że klasyfikacja obrazów skorygowanych ze względu na wpływ atmosfery pozwala na uzyskanie lepszej delimitacji klas, niż to jest w przypadku klasyfikacji zdjęć źródłowych.
Atmosphere between an object and a satellite detector is the most important element, which decided about the radiation registered by satellite sensor. However, atmospheric correction is mostly neglected during satellite image processing. It's implicated by fact that to estimate the influence of atmospheric conditions, a lot of different meteorological parameters and model of atmosphere are needed. In case of archived images gathering this kind of data is often difficult or even impossible. Therefore standard atmosphere models which described average atmospheric conditions on different areas are used. In some application atmospheric correction is not needed (i.e. qualitative analyses, visual interpretation) but for quantitative analyses or multitemporal analyses this correction is very important to obtain correct results. This article presents results of researches on influence of atmospheric correction on the process of multispectral classification. It was found that classification of atmospheric corrected images make better classes delimitation possible.
Źródło:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum; 2005, 4, 1; 41-53
1644-0668
Pojawia się w:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Land use and land cover change detection using remote geospatial techniques: a case study of an urban city in southwestern, Nigeria
Autorzy:
Olayungbo, A.A.
Powiązania:
https://bibliotekanauki.pl/articles/2080937.pdf
Data publikacji:
2021
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
land use
land cover
change detection
landsat images
supervised classification
Nigeria
Opis:
Many cities in developing countries are experiencing ecosystem modification and change. Today, about 10 million hectares of the world’s forest cover have been converted to other land uses. In Nigeria, there is an estimated increase of 8.75 million ha of cropland and decrease of about 1.71 million ha of forest cover between 1995 to 2020, indicating that Nigeria has been undergoing a wide range of land use and land cover changes. This paper analyses the changes in land use/cover in Ila Orangun, Southwestern, Nigeria from 1986 to 2018, with a view to providing adequate information on the pattern and trend of land use and land cover changes for proper monitoring and effective planning. The study utilized satellite images from Landsat 1986, 2002 and 2018. Remote sensing and Geographical Information System techniques as well as supervised image classification method were used to assess the magnitude of changes in the city over the study period. The results show that 26.36% of forest cover and 44.48% of waterbody were lost between the period of 1986 and 2018. There was a rapid increase in crop land by 365.7% and gradual increase in built-up areas by 103.85% at an annual rate of 3.25%. Forest was the only land cover type that recorded a constant reduction in areal extent. The study concluded that the changes in land use and land cover is a result of anthropogenic activities in the study area.
Źródło:
Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie. Problemy Rolnictwa Światowego; 2021, 21[36], 2; 4-14
2081-6960
Pojawia się w:
Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie. Problemy Rolnictwa Światowego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forest species mapping using airborne hyperspectral APEX data
Autorzy:
Tagliabue, Giulia
Panigada, Cinzia
Colombo, Roberto
Fava, Francesco
Cilia, Chiara
Baret, Frédéric
Vreys, Kristin
Meuleman, Koen
Rossini, Micol
Powiązania:
https://bibliotekanauki.pl/articles/1035947.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Warszawski. Wydział Geografii i Studiów Regionalnych
Tematy:
Vegetation map
Hyperspectral
Aerial
Supervised classification
Multi-temporal dataset
Forest ecosystem
Opis:
The accurate mapping of forest species is a very important task in relation to the increasing need to better understand the role of the forest ecosystem within environmental dynamics. The objective of this paper is the investigation of the potential of a multi-temporal hyperspectral dataset for the production of a thematic map of the dominant species in the Forêt de Hardt (France). Hyperspectral data were collected in June and September 2013 using the Airborne Prism EXperiment (APEX) sensor, covering the visible, near-infrared and shortwave infrared spectral regions with a spatial resolution of 3 m by 3 m. The map was realized by means of a maximum likelihood supervised classification. The classification was first performed separately on images from June and September and then on the two images together. Class discrimination was performed using as input 3 spectral indices computed as ratios between red edge bands and a blue band for each image. The map was validated using a testing set selected on the basis of a random stratified sampling scheme. Results showed that the algorithm performances improved from an overall accuracy of 59.5% and 48% (for the June and September images, respectively) to an overall accuracy of 74.4%, with the producer’s accuracy ranging from 60% to 86% and user’s accuracy ranging from 61% to 90%, when both images (June and September) were combined. This study demonstrates that the use of multi-temporal high-resolution images acquired in two different vegetation development stages (i.e., 17 June 2013 and 4 September 2013) allows accurate (overall accuracy 74.4%) local-scale thematic products to be obtained in an operational way.
Źródło:
Miscellanea Geographica. Regional Studies on Development; 2016, 20, 1; 28-33
0867-6046
2084-6118
Pojawia się w:
Miscellanea Geographica. Regional Studies on Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of land-use changes resulting from shrimp farming on acid sulfate soils in the Can Gio coastal wetland area (Vietnam)
Autorzy:
Tran, Tran Bao
Bui, Ha Manh
Powiązania:
https://bibliotekanauki.pl/articles/762911.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
land use, acid sulfate soils, shrimp farming, supervised classification, soil reclamation
Opis:
Acid sulfate soils in coastal wetland areas are particularly vulnerable to land-use changes. We identifid the potential impacts of land-use changes in the Can Gio coastal wetland area in Vietnam due to the reclamation of acid sulfate soils from shrimp farms. Our study applied the support of vector machine algorithm in ENVI software to observe land-use changes from 1995 to 2015, using Landsat Thematic Mapper and Operational Land Imager data. We classifid the land use of the study area into four major classes including vegetation, bare land, dedicated land and aquaculture land. Our study successfully met the overall classifiation accuracy requirement above 95% and kappa statistics above 0.95. Between 1995 and 2006, about 2,938.05 ha of bare land and 1,464.66 ha of vegetation (mangrove forest) were converted to aquaculture land. In contrast, between 2006 and 2015, 2,423.88 ha of aquaculture land converted back to bare land, mainly related to the abandonment of shrimp ponds due to crop failure and disease. The disturbance of acid sulfate soils through initial soil reclamation and subsequent fallowing is considered a key reason for hastening and extending soil acidifiation in the study area. We collected 144 topsoil samples from 17 fallowed ponds in two batches, and 142 of these were acidic: 128 samples were extremely and strongly acidic (pH < 5.5), 14 samples were moderately and slightly acid (pH between 5.5 and 6.5), and only two samples were neutral (pH over 6.5).
Źródło:
Polish Journal of Soil Science; 2018, 51, 2
0079-2985
Pojawia się w:
Polish Journal of Soil Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Korekcja geometryczna a wyniki klasyfikacji zdjęć wielospektralnych
The geometric correction versus the results of multispectral classifikation
Autorzy:
Osińska-Skotak, K.
Fijałkowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/341403.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Przyrodniczy we Wrocławiu
Tematy:
korekcja geometryczna
transformacja geometryczna
klasyfikacja nadzorowana
zdjęcia wielospektralne
geometric correction
geometric transformation
supervised classification
multispectral classification
Opis:
Klasyfikacja cyfrowa jest najczęściej wykorzystywanym algorytmem do tworzenia map tematycznych na podstawie zdjęć satelitarnych, np. mapy pokrycia terenu. Jednak aby wynik klasyfikacji stał się materiałem kartometrycznym, należy go poddać transformacji geometrycznej do określonego układu współrzędnych. Możliwe jest również postępowanie odwrotne, tzn. najpierw następuje wykonanie transformacji geometrycznej zdjęć oryginalnych, a dopiero potem przeprowadza się proces klasyfikacji już zgeometryzowanych zdjęć. Jednak, zważywszy na naturę cyfrowego przetwarzania obrazów rastrowych, powstaje pytanie: czy rezultaty obu postępowań będą takie same? Niniejsze opracowanie prezentuje wyniki badań nad wpływem momentu wykonywania transformacji geometrycznej zdjęć na wynik klasyfikacji nadzorowanej. Prace badawcze przeprowadzono na dwóch scenach satelitarnych zarejestrowanych przez satelitę SPOT5. Wybrane pola testowe reprezentują dwa odmienne typy krajobrazu: o gospodarstwach wielkoobszarowych oraz o rozdrobnionej strukturze agrarnej. W wyniku prac badawczych okazało się, że istnieje wpływ korekcji geometrycznej zdjęć satelitarnych na wyniki klasyfikacji, jednak bardziej istotnym elementem przetwarzania jest wybór metody ponownego próbkowania oraz rozmiar piksela deklarowanego przy próbkowaniu obrazu podczas wykonywania transformacji geometrycznej.
The multispectral classification is the most common algorithm, which is applied for the creation of thematic maps (like land use / land cover maps) based on the satellite images. To obtain the final classification result having quality of cartometric material, it is requisite to carry out the geometric correction process. It's possible to realize this process in two way: first of them consists in geometric image correction and to continue by classification of image being already georeferenced yet. Second way is to classify the source image and to continue by geometric correction of the image already classified. However, knowing the image digital treatment nature, we should ask - are the both results the same or not? The presented study show the results of the researches about impact of the moment of the image geometric correction versus of multispectral classification process. This study was done at the base of SPOT5 satellite images for two test sites in Poland: Żuławy (consolidate agrarian structure) and Wyszków (fine agrarian structure). According to the results the influence of the geometric correction of satellite images on the results of multispectral classification is exist. Nevertheless, the most important element of image processing is the algorithm, which is chosen for the image resampling and the pixel size of the resampled image.
Źródło:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum; 2005, 4, 1; 55-66
1644-0668
Pojawia się w:
Acta Scientiarum Polonorum. Geodesia et Descriptio Terrarum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data classification based on photogrammetry
Klasyfikacja danych w oparciu o materiały fotogrametryczne
Autorzy:
Piech, Izabela
Żaba, Tadeusz
Jankowska, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/100599.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
laser scanning
supervised classification
unsupervised classification
aerial image
skaning laserowy
zdjęcie lotnicze
klasyfikacja nadzorowana
klasyfikacja nienadzorowana
Opis:
The aim of the paper was to classify data from aerial laser scanning and CIR digital images, which were orientated, connected and aligned by the Agisoft Photoscan software. Then, in order to distinguish the ground a point cloud was generated. This was to create a correct terrain mesh and, in consequence, an orthophotomap. The next stage is to develop a new point cloud using ArcGIS. The land cover from the images was combined with the ground mapped by LiDAR. New heights were calculated relative to the ground surface height 0. The point cloud was converted into a raster form, providing a normalized Digital Surface Model (nDSM). It was the first element of the output composition, which also consisted of the NIR and RED channels, acquired from the cloud point generated in Agisoft. The colour composition obtained in such way was subjected to four object-oriented and pixel-oriented classification methods: I – ISO Cluster, II – Maximum Likelihood, III – Random Trees, IV – Support Vector Machine. Object grouping is possible due to information stored in the display content. This technique is prompted by human ability of image interpretation. It draws attention to more variables, so effects similar to human perception of reality are possible to achieve. The unsupervised method is based on a process of automatic search for image fragments, which allows assigning them to individual categories by a statistical analysis algorithm. In turn, supervised method uses “training datasets”, which are used to “teach” the program assigning individual or grouped pixels to classes [Benz UC et al., 2004]. The area studied for land development was the Lutowiska municipality, in the Podkarpackie Voivodeship, Bieszczady County. As a result of the classification, 11 classes of terrain features were distinguished: class 0 – road infrastructure, class 1 – roads, class 2 – buildings, class 3 – waters, class 4 – meadows, class 5 – arable lands, class 6 – pastures, class 7 – high vegetation, class 8 – medium vegetation, class 9 – low vegetation, class 10 – quarry. The area of research covers an area of about 28 km2. Aerial images were made in 2015. Field vision and photopoint measurement was carried out in May 2018.
Celem opracowania jest klasyfikacja danych na podstawie lotniczego skaningu laserowego oraz zdjęć cyfrowych CIR. Do opracowania posłużyło oprogramowanie Agisoft Photoscan, w którym dokonano zorientowania, połączenia i wyrównania zdjęć. Następnie wygenerowano z nich chmurę punktów, z której wydzielono grunt. Miało to na celu poprawne utworzenie siatki terenu, a w konsekwencji ortofotomapy. Kolejny etap pracy to utworzenie nowej chmury punktów przy wykorzystaniu programu ArcGIS. Pokrycie terenu ze zdjęć połączono z gruntem z LiDAR. Obliczono nowe wysokości względem powierzchni terenu, któremu nadano wysokość 0. Dokonano konwersji chmury punktów do postaci rastrowej, uzyskując Znormalizowany Numeryczny Model Pokrycia Terenu. Był to pierwszy element kompozycji wyjściowej, która składała się także z kanału NIR oraz RED, pozyskanych z chmury wygenerowanej w Agisoft. Otrzymaną w ten sposób kompozycję barwną poddano czterem metodom klasyfikacji obiektowej i pikselowej: I- ISO Cluster, II- Maximum Likelihood, III- Random Trees, IV- Support Vector Machine. Grupowanie obiektowe jest możliwe dzięki informacji zapisanej w treści zobrazowania. Technika ta wykorzystuje podejście zainspirowane zdolnością interpretacji obrazu przez człowieka. Zwraca uwagę na więcej zmiennych, dzięki czemu można uzyskać efekty zbliżone do postrzegania rzeczywistości przez ludzi. Metoda Unsupervised bazuje na procesie automatycznego wyszukiwania fragmentów obrazu i przyporządkowania ich do poszczególnych kategorii za pomocą algorytmu wykorzystującego analizę statystyczną. Z kolei Supervised wykorzystuje „pola treningowe”, za pomocą których „uczy” program, do której klasy przyporządkować pojedyncze, czy też zgrupowane piksele [Benz U. C. i in., 2004]. Obszarem poddanym analizie jest gmina Lutowiska, w województwie podkarpackim, powiecie bieszczadzkim, na której dokonano analizy zagospodarowania terenu. W wyniku klasyfikacji wyodrębniono 11 klas form terenu: klasa 0- infrastruktura drogowa, klasa 1- drogi, klasa 2- budynki, klasa 3- woda, klasa 4- łąki, klasa 5- grunty orne, klasa 6- pastwiska, klasa 7- roślinność wysoka, klasa 8- średnia roślinność, klasa 9- roślinność niska, klasa 10- kamieniołom. Obszar opracowania stanowi powierzchnię ok. 28 km2. Zobrazowania lotnicze zostały wykonane w 2015r. Wizję terenową oraz pomiar fotopunktów przeprowadzono w maju 2018r.
Źródło:
Geomatics, Landmanagement and Landscape; 2020, 2; 93-110
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of forests in the Precarpathian region using QuickBird-2 high resolution satellite image
Autorzy:
Babushka, A.
Burshtynska, K.
Denys, Y.
Powiązania:
https://bibliotekanauki.pl/articles/100291.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
supervised classification
divergence
separation of classes
reliability
training sample
niezawodność
dywergencja
szkolenie
klasyfikacja nadzorowana
Opis:
Based on the study of literature relating to the classification of forests using high resolution space images established that the main problem of classification is the separateness classes and close to the spectral brightness classes can not be identified with high accuracy. Classification using maximum likelihood algorithm, which generally gives better results compared with algorithms of spectral distance or Mahalanobis distance, does not lead to the definition of areas with a high probability. Therefore, the article examines approach of classification of forests using post-processing. Experimental studies were carried using an satellite image of the forested area of Precarpathian region obtained from QuickBird-2 (June 2010). Data collected during field research were used as Verification data to determine areas of different objects. The controlled classification has been performed using the method of the maximum likelihood, size of signatures for 8 classes were selected from 100 to 400 points. For these classes was calculated matrix of separation of classes, and was found a significant correlation between next classes: young conifer plantings and pine and mixed forest, and deciduous young plantings and deciduous forest. Post-processing significantly improves the reliability of determination of area, which consists in the assign to all pixel of the selected neighbourhood brightness of most points, although there is a dependency of reliability of determination of area from the size of the area. Accuracy of determination of areas are from 92 to 99%.
Źródło:
Geomatics, Landmanagement and Landscape; 2017, 2; 7-19
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Monte Carlo feature selection and interdependency discovery is unbiased
Autorzy:
Dramiński, M.
Kierczak, M.
Nowak-Brzezińska, A.
Koronecki, J.
Komorowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/205575.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
supervised classification
feature selection
feature interactions
high-dimensional problems
applications to genomic and proteomic data
Opis:
We show that the Monte Carlo feature selection algorithm for supervised classification proposed, by Dramiński et al. (2008), is not biased towards features with many categories (levels or values). While the algorithm, later extended to include the functionality of discovering interdependencies between features, is surprisingly simple and has been successfully used on many biological data and transactional data of commercial origin, and it has never revealed any bias of the type mentioned, the alleged property of its unbiasedness required a closer scrutiny which is thus provided here. Admittedly, the algorithm does reveal some bias coming from another source, but it is negligible. Hence our final claim is that the algorithm is practically unbiased and the results it provides can be considered fully reliable.
Źródło:
Control and Cybernetics; 2011, 40, 2; 199-211
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Accuracy Analysis Comparison of Supervised Classification Methods for Mapping Land Cover Using Sentinel 2 Images in the Al‑Hawizeh Marsh Area, Southern Iraq
Autorzy:
Alwan, Imzahim A.
Aziz, Nadia A.
Powiązania:
https://bibliotekanauki.pl/articles/1838006.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
land cover mapping
Sentinel 2
supervised classification
maximum likelihood
Support Vector Machine (SVM)
confusion matrix
Opis:
Land cover mapping of marshland areas from satellite images data is not a simple process, due to the similarity of the spectral characteristics of the land cover. This leads to challenges being encountered with some land covers classes, especially in wetlands classes. In this study, satellite images from the Sentinel 2B by ESA (European Space Agency) were used to classify the land cover of Al Hawizeh marsh/Iraq Iran border. Three classification methods were used aimed at comparing their accuracy, using multispectral satellite images with a spatial resolution of 10 m. The classification process was performed using three different algorithms, namely: Maximum Likelihood Classification (MLC), Artificial Neural Networks (ANN), and Support Vector Machine (SVM). The classification algorithms were carried out using ENVI 5.1 software to detect six land cover classes: deep water marsh, shallow water marsh, marsh vegetation (aquatic vegetation), urban area (built up area), agriculture area, and barren soil. The results showed that the MLC method applied to Sentinel 2B images provides a higher overall accuracy and the kappa coefficient compared to the ANN and SVM methods. Overall accuracy values for MLC, ANN, and SVM methods were 85.32%, 70.64%, and 77.01% respectively.
Źródło:
Geomatics and Environmental Engineering; 2021, 15, 1; 5-21
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monitoring of horizontal displacements and changes of the riverine area of the Dniester River
Autorzy:
Shevchuk, Volodymyr
Burshtynska, Khrystyna
Korolik, Iryna
Halochkin, Maksym
Powiązania:
https://bibliotekanauki.pl/articles/1844327.pdf
Data publikacji:
2021
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
channel processes
Dniester River
monitoring
riverbed displacements
riverine areas
satellite images
supervised classification
topographic maps
Opis:
The article discusses the monitoring of horizontal displacements of the channel of Dniester, the second largest river in Ukraine, based on topographic maps, satellite images, as well as geological, soil and quaternary sediment maps. Data processing has been carried out using the geographic information system ArcGIS. The monitoring over a 140-year period (1874–2015) has been performed at the river’s transition from a mountainous to plain terrain on the 67 km section of the river. During this period, maximum displacements in the study area were 590–620 m. The research examines water protection zones needed for channel displacements. The article describes the monitoring methodology and analyses changes over a period of 18 years (2000–2018). The analysis includes the anthropogenic influence on the channel in the monitoring area. Results of the research may be useful for construction and cadastral works related to the channel in the area concerned, as well as for water management.
Źródło:
Journal of Water and Land Development; 2021, 49; 1-15
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using a GEOBIA framework for integrating different data sources and classification methods in context of land use/land cover mapping
Autorzy:
Osmólska, A.
Hawryło, P.
Powiązania:
https://bibliotekanauki.pl/articles/145304.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
mapa użytkowanych gruntów
mapa pokrycia terenu
mapa leśna
data fusion
random forest
supervised classification
Sentinel-2
Opis:
Land use/land cover (LULC) maps are important datasets in various environmental projects. Our aim was to demonstrate how GEOBIA framework can be used for integrating different data sources and classification methods in context of LULC mapping.We presented multi-stage semi-automated GEOBIA classification workflow created for LULC mapping of Tuszyma Forestry Management area based on multi-source, multi-temporal and multi-resolution input data, such as 4 bands- aerial orthophoto, LiDAR-derived nDSM, Sentinel-2 multispectral satellite images and ancillary vector data. Various classification methods were applied, i.e. rule-based and Random Forest supervised classification. This approach allowed us to focus on classification of each class ‘individually’ by taking advantage from all useful information from various input data, expert knowledge, and advanced machine-learning tools. In the first step, twelve classes were assigned in two-steps rule-based classification approach either vector-based, ortho- and vector-based or orthoand Lidar-based. Then, supervised classification was performed with use of Random Forest algorithm. Three agriculture-related LULC classes with vegetation alternating conditions were assigned based on aerial orthophoto and Sentinel-2 information. For classification of 15 LULC classes we obtained 81.3% overall accuracy and kappa coefficient of 0.78. The visual evaluation and class coverage comparison showed that the generated LULC layer differs from the existing land cover maps especially in relative cover of agriculture-related classes. Generally, the created map can be considered as superior to the existing data in terms of the level of details and correspondence to actual environmental and vegetation conditions that can be observed in RS images.
Źródło:
Geodesy and Cartography; 2018, 67, 1; 99-116
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wieloczasowe dane obrazowe w badaniu zmian pokrycia terenu
Multi-temporal data for land cover change detection
Autorzy:
Michałowska, K.
Głowienka-Mikrut, E.
Powiązania:
https://bibliotekanauki.pl/articles/130038.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
wieloczasowe obrazy satelitarne
klasyfikacja nadzorowana
SPN
zmiany pokrycia terenu
multitemporal satellite image
supervised classification
analysis of changes
Opis:
W badaniach wykorzystane zostały wieloczasowe zdjęcia satelitarne z lat 1979, 2000 i 2007 dla obszaru Słowińskiego Parku Narodowego charakteryzującego się dużą dynamiką zmian krajobrazu. Bazując na wynikach klasyfikacji nadzorowanej dla trzech roczników zdjęć satelitarnych obszaru Parku przeprowadzono badanie zmian pokrycia terenu i określono wielkość oraz kierunek przekształceń dla poszczególnych klas. Na podstawie map pokrycia terenu wykonano analizę korelacji krzyżowej w programie IDRISI. Wykonano również ilościową analizę zmian powierzchni poszczególnych klas pokrycia terenu w danym przedziale czasowym. Obliczone wielkości (pikselowe) zmian w zakresie poszczególnych form pokrycia dla obszarów w granicach Parku pozwoliły na utworzenie map przedstawiających tereny, które w okresie 1979÷2000 oraz 1979÷2007 uległy przekształceniu oraz map terenów „stałych”. W ramach badań przeprowadzona została ilościowa i jakościowa analiza stopnia i kierunku przekształceń poszczególnych elementów krajobrazu Parku w badanych okresach. W rezultacie określono procentowy poziom zmian dla danych form pokrycia terenu SPN z uwzględnieniem przejścia jednej kategorii w inną. Prace finansowane w ramach badań statutowych AGH nr 11.11.150.949.
The research employed multitemporal satellite photos from 1979, 2000, and 2007 of the area of the Słowiński National Park, which is marked by its high dynamics of landscape changes. Based on the results of a supervised classification concerning three annual volumes of satellite images of the Park area, a research of the area coverage changes has been conducted, and the size of changes and direction of transformations for particular classes were determined. Using land cover maps, an analysis of cross correlation in IDRISI software was conducted, as well as a quantitative analysis of surface area changes of particular land coverage classes in certain time intervals. The calculated (pixel) volumes of changes in particular land coverage forms for the areas within the Park limits made it possible to create maps showing those areas, which in 1979÷2000 and in 1979÷2007 were subjected to transformations, as well as maps of "constant" areas. The scope of the research included a quantitative and qualitative analysis of the degree and direction of transformations of particular Park landscape elements in the examined time periods. As a result, percentage level of the changes for the area coverage forms of the Park were determined, allowing for transformations of one category into another.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2010, 21; 281-289
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detekcja zmian pokrycia terenu na zdjęciach satelitarnych Landsat - porównanie trzech metod
Land cover change detection using Landsat imagery - comparison of three methods
Autorzy:
Niedzielko, J.
Lewiński, S.
Powiązania:
https://bibliotekanauki.pl/articles/132345.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
pokrycie terenu
wykrywanie zmian
Landsat
różnica obrazów
klasyfikacja nadzorowana
analiza głównych składowych
land cover
change detection
image difference
supervised classification
principal components analysis
Opis:
Environmental changes are amongst the most important research subjects in geography. The changes may be natural, but also may be caused by human activity. Land cover is a significant component of the changing environment. Monitoring of its changes involves usage of satellite techniques. Landsat mission provides comparable data since forty years, very useful in land cover studies. Utilization of satellite techniques in such researches is developing quickly. This paper is an example of methods that enable quick and quite accurate assessment of range and spatial distribution of land cover changes. Practical application of image difference, principal component analysis and supervised classification to detect land cover changes is presented. Methods are applied to study area containing different land cover classes. Accuracy of methods was tested and compared. Combining methods presented in earlier researches, five new methods were developed: image difference, image difference with classification, classification, principal component analysis, principal component analysis with classification. Methods were applied to three different input datasets: pairs of images with different level of preprocessing. First dataset was a pair of georeferenced Landsat Thematic Mapper images. The second dataset was the same pair of images, atmospherically corrected using dark object subtraction method. Normalization of one image to the other provided the third dataset. Accuracy assessment was executed. Results were obtained from confusion matrices. Overall accuracy of methods was high, from 77% to 91%. Supervised classification was the most accurate method. Combining fully automatic methods with supervised classification has increased overall accuracy of automatic change detection, however not significantly. Studies on combining change detection methods should be continued. Future studies should concentrate on the automation of change detection process.
Źródło:
Teledetekcja Środowiska; 2012, 47; 87-98
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weryfikacja kompletności danych ogólnokrajowej Bazy Azbestowej metodami teledetekcyjnymi na przykładzie pruszkowskiej dzielnicy Żbików
Verification of completeness of data of the National Asbestos Database by remote sensing methods on the example of the Pruszków district of Żbików
Autorzy:
Ścisłowski, Ł.
Bielecki, A.
Powiązania:
https://bibliotekanauki.pl/articles/132375.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
azbest
baza azbestowa
obraz multispektralny
satelita WorldView2
teledetekcja
klasyfikacja nadzorowana
asbestos
asbestos database
multispectral images
WorldView2 satellite
remote sensing
supervised classification
Opis:
Poniższa praca weryfikuje kompletność danych zawartych w ogólnopolskiej Bazie Azbestowej przy użyciu technik teledetekcyjnych z wybranej części gminy miejskiej Pruszków. Podjęto próbę inwentaryzacji cementowo-azbestowych pokryć dachowych przy użyciu wysokorozdzielczych zobrazowań multispektralnych wykonanych przez sensory satelity WorldView 2. We wstępie przedstawiono krótką charakterystykę materiału, jakim jest azbest oraz opisano „Program Oczyszczania Kraju z Azbestu na lata 2009-2032”. Następnie zaprezentowano źródła danych użytych do przeprowadzonych analiz. W części praktycznej opisano metody przygotowania danych, a także proces przeprowadzenia klasyfikacji nadzorowanej, której wynikiem było wykrycie cementowo-azbestowych dachów. Pomimo, że wysokorozdzielcze i multikanałowe zobrazowania nie zawierają wartości odbić dla najodpowiedniejszych do wykrycia azbestu długości fal, otrzymane wyniki można uznać za satysfakcjonujące (np. do celów weryfikacji dokładności inwentaryzacji pokryć azbestowych dla jednostek samorządu terytorialnego). Wyniki przeprowadzonej inwentaryzacji zostały porównane z krajową Bazą Azbestu dla jednej z dzielnic Pruszkowa - Żbikowa. Otrzymano znaczące rozbieżności pomiędzy obiema inwentaryzacjami.
This study verifies the completeness of data contained in the national Asbestos Database, using remote sensing techniques in a selected area of Pruszków. The attempt was made to prepare an inventory of asbestos-cement roofs using the multi-spectral satellite imagery obtained from the high-resolution WorldView 2 satellite. In the introduction, a brief characteristic of the asbestos was presented and the National Asbestos Purification Program for 2009-2032 was described. Then, the sources of data used in the research were presented. The practical part presents the method of data preparation, and then, describes the process of conducting the supervised classification, which resulted in the detection of cement-asbestos roofing. Although the high-resolution and multi-channel WorldView-2 satellite does not record the best wavelength for the detection of asbestos covers, it led results that are satisfactory, e.g. for the purpose of monitoring the accuracy of inventory results carried out for the needs of local governments. The results of the conducted inventory were compared with the nationwide Asbestos Database for the Pruszków district - Żbików. There were significant discrepancies in the number of asbestos covered roofs that were inventoried.
Źródło:
Teledetekcja Środowiska; 2017, 56; 25-35
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies