Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Super-Twisting Algorithm" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Model Predictive Super-twisting sliding mode control for an autonomous surface vehicle
Autorzy:
Esfahani, Hossein Nejatbakhsh
Szlapczynski, Rafal
Powiązania:
https://bibliotekanauki.pl/articles/260526.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
utonomous Surface Vehicle
Model Predictive Control
Sliding Mode Control
Super-Twisting Algorithm
Chattering Attenuation
Opis:
This paper presents a new robust Model Predictive Control (MPC) algorithm for trajectory tracking of an Autonomous Surface Vehicle (ASV) in presence of the time-varying external disturbances including winds, waves and ocean currents as well as dynamical uncertainties. For fulfilling the robustness property, a sliding mode control-based procedure for designing of MPC and a super-twisting term are adopted. The MPC algorithm has been known as an effective approach for the implementation simplicity and its fast dynamic response. The proposed hybrid controller has been implemented in MATLAB / Simulink environment. The results for the combined Model Predictive Super-Twisting Sliding Mode Control (MP-STSMC) algorithm have shown that it significantly outperforms conventional MPC algorithm in terms of the transient response, robustness and steady state response and presents an effective chattering attenuation in comparison with the Super-Twisting Sliding Mode Control (STSMC) algorithm.
Źródło:
Polish Maritime Research; 2019, 3; 163-171
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative investigations of nonlinear and linear observers for a highly manoeuvrable target in sliding mode guidance
Autorzy:
Wang, Y.
Sun, M.
Du, S.
Chen, Z.
Powiązania:
https://bibliotekanauki.pl/articles/201020.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
guidance law
second-order sliding mode
super-twisting algorithm
linear observer
target manoeuvre
algorytm
obserwator liniowy
manewr
algorytm przesuwania
Opis:
Target manoeuvre is one of the key factors affecting guidance accuracy. To intercept highly maneuverable targets, a second-order sliding-mode guidance law, which is based on the super-twisting algorithm, is designed without depending on any information about the target motion. In the designed guidance system, the target estimator plays an essential role. Besides the existing higher-order sliding-mode observer (HOSMO), a first-order linear observer (FOLO) is also proposed to estimate the target manoeuvre, and this is the major contribution of this paper. The closed-loop guidance system can be guaranteed to be uniformly ultimately bounded (UUB) in the presence of the FOLO. The comparative simulations are carried out to investigate the overall performance resulting from these two categories of observers. The results show that the guidance law with the proposed linear observer can achieve better comprehensive criteria for the amplitude of normalised acceleration and elevator deflection requirements. The reasons for the different levels of performance of these two observer-based methods are thoroughly investigated.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2017, 65, 2; 233-245
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust hybrid synchronization control of chaotic 3-cell CNN with uncertain parameters using smooth super twisting algorithm
Autorzy:
Siddique, Nazam
Rehman, Fazal
Raoof, Uzair
Iqbal, Shahid
Rashad, Muhammad
Powiązania:
https://bibliotekanauki.pl/articles/27311427.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
hybrid synchronization
cellular neural network
sliding mode control
smooth super twisting algorithm
Lyapunov stability theory
synchronizacja hybrydowa
sieć neuronowa komórkowa
sterowanie trybem przesuwnym
teoria Lyapunova
stabilność Lyapunova
algorytm super skręcania płynny
Opis:
This paper presents the control design framework for the hybrid synchronization (HS) and parameter identification of the 3-Cell Cellular Neural Network. The cellular neural network (CNN) of this kind has increasing practical importance but due to its strong chaotic behavior and the presence of uncertain parameters make it difficult to design a smooth control framework. Sliding mode control (SMC) is very helpful for this kind of environment where the systems are nonlinear and have uncertain parameters and bounded disturbances. However, conventional SMC offers a dangerous chattering phenomenon, which is not acceptable in this scenario. To get chattering-free control, smooth higher-order SMC formulated on the smooth super twisting algorithm (SSTA) is proposed in this article. The stability of the sliding surface is ensured by the Lyapunov stability theory. The convergence of the error system to zero yields hybrid synchronization and the unknown parameters are computed adaptively. Finally, the results of the proposed control technique are compared with the adaptive integral sliding mode control (AISMC). Numerical simulation results validate the performance of the proposed algorithm.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 5; art. no. e146474
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust estimation based nonlinear higher order sliding mode control strategies for PMSG-WECS
Autorzy:
Nazir, Awais
Khan, Safdar Abbas
Khan, Malak Adnan
Alam, Zaheer
Khan, Imran
Irfan, Muhammad
Rehman, Saifur
Nowakowski, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/27311430.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
wind energy conversion systems
WECS
robust control
maximum power point tracking
MPPT
sliding mode control
SMC
super-twisting algorithm
STA
high gain observer
artificial neural network
ANN
function fitting
backstepping
śledzenie maksymalnego punktu mocy
obserwator o dużym wzmocnieniu
sztuczna sieć neuronowa
dopasowanie funkcji
system konwersji energii wiatrowej
sterowanie odporne
sterowanie ślizgowe
algorytm super skręcania
Opis:
The wind energy conversion systems (WECS) suffer from an intermittent nature of source (wind) and the resulting disparity between power generation and electricity demand. Thus, WECS are required to be operated at maximum power point (MPP). This research paper addresses a sophisticated MPP tracking (MPPT) strategy to ensure optimum (maximum) power out of the WECS despite environmental (wind) variations. This study considers a WECS (fixed pitch, 3KW, variable speed) coupled with a permanent magnet synchronous generator (PMSG) and proposes three sliding mode control (SMC) based MPPT schemes, a conventional first order SMC (FOSMC), an integral back-stepping-based SMC (IBSMC) and a super-twisting reachability-based SMC, for maximizing the power output. However, the efficacy of MPPT/control schemes rely on availability of system parameters especially, uncertain/nonlinear dynamics and aerodynamic terms, which are not commonly accessible in practice. As a remedy, an off-line artificial function-fitting neural network (ANN) based on Levenberg-Marquardt algorithm is employed to enhance the performance and robustness of MPPT/control scheme by effectively imitating the uncertain/nonlinear drift terms in the control input pathways. Furthermore, the speed and missing derivative of a generator shaft are determined using a high-gain observer (HGO). Finally, a comparison is made among the stated strategies subjected to stochastic and deterministic wind speed profiles. Extensive MATLAB/Simulink simulations assess the effectiveness of the suggested approaches.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 5; art. no. e147063
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies