Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Statistical prediction" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
The predicting of the overall number of points in the Polish football leagueeague
Autorzy:
Brzyski, Damian
Powiązania:
https://bibliotekanauki.pl/articles/748762.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Football (soccer)
Statistical prediction
Time dependent model
Polish league
Opis:
In this paper we will discuss the issue of predicting the number of points gained at the end of the season by teams from the Polish football league. We will present and compare two models based on different approaches and show how their appropriate mixture improves the prediction accuracy. We shall use mean absolute error to measure a model's fit.
Źródło:
Mathematica Applicanda; 2013, 41, 1
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling Safflower Seed Productivity in Dependence on Cultivation Technology by the Means of Multiple Linear Regression Model
Autorzy:
Vozhehova, Raisa
Fedorchuk, Mykhailo
Kokovikhin, Serhii
Lykhovyd, Pavlo
Nesterchuk, Vasyl
Mrynskii, Ivan
Markovska, Olena
Powiązania:
https://bibliotekanauki.pl/articles/124374.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
cultivation technology
prediction
statistical analysis
yields
Opis:
The results of the study devoted to the evaluation of reliability of the multiple linear regression model for safflower seed yields prediction were presented. Regression model reliability was assessed by the direct comparison of the modeled yields values with the true ones, which were obtained in the field trials with safflower during 2010-2012. The trials were dedicated to study of the effect of various cultivation technology treatments on the safflower seed productivity at the irrigated lands of the South of Ukraine. The agrotechnological factors, which were investigated in the experiments, include: A – soil tillage: A1 – disking at the depth of 14–16 cm; A2 – plowing at the depth of 20–22 cm; B – time of sowing: B1 – 3rd decade of March; B2 – 2nd decade of April; B3 – 3rd decade of April; C – inter-row spacing: C1 – 30 cm; C2- 45 cm; C3 – 60 cm; D – mineral fertilizers dose: D1 – N0P0; D2 – N30P30; D3 – N60P60; D4 – N90P90. Regression analysis allowed us to create a model of the crop productivity, which looks as follows: Y = –1.3639 + 0.0213Х1 + 0.0017Х2 – 0.0121Х3 + 0.0045Х4, where: Y is safflower seed yields, t ha-1; Х1 – soil tillage depth, cm; Х2 – sum of the positive temperatures above 10°С; Х3 – inter-row spacing, cm; Х4 – mineral fertilizers dose, kg ha-1. A direct comparison of the modeled safflower seed yield values with the true ones showed a very slight inaccuracy of the developed model. The maximum amplitude of the residuals averaged to 0.27 t ha-1. Therefore, we conclude that multiple linear regression analysis can be successfully used in purposes of agricultural modeling.
Źródło:
Journal of Ecological Engineering; 2019, 20, 4; 8-13
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving Crop Yield Predictions in Morocco Using Machine Learning Algorithms
Autorzy:
Ed-Daoudi, Rachid
Alaoui, Altaf
Ettaki, Badia
Zerouaoui, Jamal
Powiązania:
https://bibliotekanauki.pl/articles/24202898.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
crop yield prediction
machine learning algorithm
statistical model
model evaluation
Opis:
In Morocco, agriculture is an important sector that contributes to the country’s economy and food security. Accurately predicting crop yields is crucial for farmers, policy makers, and other stakeholders to make informed decisions regarding resource allocation and food security. This paper investigates the potential of Machine Learning algorithms for improving the accuracy of crop yield predictions in Morocco. The study examines various factors that affect crop yields, including weather patterns, soil moisture levels, and rainfall, and how these factors can be incorporated into Machine Learning models. The performance of different algorithms, including Decision Trees, Random Forests, and Neural Networks, is evaluated and compared to traditional statistical models used for crop prediction. The study demonstrated that the Machine Learning algorithms outperformed the Statistical models in predicting crop yields. Specifically, the Machine Learning algorithms achieved mean squared error values between 0.10 and 0.23 and coefficient of determination values ranging from 0.78 to 0.90, while the Statistical models had mean squared error values ranging from 0.16 to 0.24 and coefficient of determination values ranging from 0.76 to 0.84. The Feed Forward Artificial Neural Network algorithm had the lowest mean squared error value (0.10) and the highest R² value (0.90), indicating that it performed the best among the three Machine Learning algorithms. These results suggest that Machine Learning algorithms can significantly improve the accuracy of crop yield predictions in Morocco, potentially leading to improved food security and optimized resource allocation for farmers.
Źródło:
Journal of Ecological Engineering; 2023, 24, 6; 392--400
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling, identification and prediction of oil spill domains at port and sea water areas
Autorzy:
Dąbrowska, Ewa
Kołowrocki, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2068700.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
port accident
sea accident
oil spill
oil spill drift
oil spill domain
stochastic modelling
statistical identification
stochastic prediction
Monte Carlo prediction
Opis:
Methods of oil spill domains determination are reviewed and a new method based on a probabilistic approach to the solution of this problem is recommended. A semi-Markov model of the process of changing hydro-meteorological conditions is constructed. To describe the oil spill domain central point position a two-dimensional stochastic process is used. Parametric equations of oil spill domain central point drift trend curve for different kinds of hydro-meteorological conditions are determined. The general model of oil spill domain determination for various hydro-meteorological conditions is proposed. Moreover, statistical methods of this general model unknown parameters estimation are proposed. These methods are presented in the form of algorithms giving successive steps which should be done to evaluate these unknown model parameters on the base of statistical data coming from experiments performed at the sea. Moreover, approximate expected stochastic prediction and Monte Carlo Simulation in real time prediction of the oil spill domain movement are proposed.
Źródło:
Journal of Polish Safety and Reliability Association; 2019, 10, 1; 43--58
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rapid Text Entry Using Mobile and Auxiliary Devices for People with Speech Disorders Communication
Autorzy:
Krak, Iurii V.
Barmak, Olexander V.
Bahrii, Ruslan O.
Wójcik, Waldemar
Rakhmetullina, Saule
Amirgaliyeva, Saltanat
Powiązania:
https://bibliotekanauki.pl/articles/227152.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
information technology
alternative communication
ambiguous virtual keyboard
text prediction
statistical language model
N-gram
Opis:
The article considers information technology for the realization of human communication using residual human capabilities, obtained by organizing text entry using mobile and auxiliary devices. The components of the proposed technology are described in detail: the method for entering text information to realize the possibility of introducing a limited number of controls and the method of predicting words that are most often encountered after words already entered in the sentence. A generalized representation of the process of entering text is described with the aid of an ambiguous virtual keyboard and the representation of control signals for the selection of control elements. The approaches to finding the optimal distribution of the set of alphabet characters for different numbers of control signals are given. The method of word prediction is generalized and improved, the statistical language model with "back-off" is used, and the approach to the formation of the training corpus of the spoken Ukrainian language is proposed.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 2; 273-279
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Statistical analysis and prediction of the product complaints
Autorzy:
Knop, Krzysztof
Ziora, Robert
Powiązania:
https://bibliotekanauki.pl/articles/23944779.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Menedżerów Jakości i Produkcji
Tematy:
quality management
cardboard packaging
complaints
quality tools
statistical analysis
prediction
zarządzanie jakością
opakowania kartonowe
narzędzia jakości
analiza statystyczna
Opis:
The article presents the results of the analysis of cardboard packaging complaints based on selected quality tools and statistical tools for the purpose of a rough assessment of the effectiveness of corrective and preventive actions taken by the surveyed company and for predictive purposes. The analysis was performed in terms of two research periods - 1 year and quarters, and from the point of view of total complaints and external - customer complaints. Data on the number of products complained of as well as financial losses incurred by the company on this account were analysed. The article presents the potential of both classic quality tools and statistical tools for the purposes of in-depth analysis of complaints data and for predictive purposes and subsequent risk analysis. The critical complaint was indicated - complaint code 403 - overprint. The number of complained products to be expected in the next quarter of the new year was determined. The article shows that the corrective and preventive actions taken by the company have not yet brought the expected result in the form of reducing the number of products complained by customers during the quarters surveyed.
Źródło:
System Safety : Human - Technical Facility - Environment; 2022, 4, 1; 99-115
2657-5450
Pojawia się w:
System Safety : Human - Technical Facility - Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wprowadzenie do predykcji z wykorzystaniem sztucznych sieci neuronowych i metod statystycznych
An introduction to prediction with the use of artificial neural networks and statistical methods
Autorzy:
Nawrocka, Monika
Drozd, Miłosz
Maszczyk, Adam
Gołaś, Artur
Powiązania:
https://bibliotekanauki.pl/articles/459999.pdf
Data publikacji:
2015
Wydawca:
Fundacja Pro Scientia Publica
Tematy:
predykcja
analiza statystyczna
regresja
optymalizacja
szeregi czasowe
sieci neuronowe
prediction
statistical analysis
regression
optimization
time series
neural networks
Opis:
Podejście statystyczne umożliwia prowadzenie prognoz zdarzeń lub procesów. Wyróżnia się modele regresyjne liniowe i nieliniowe, modele szeregów czasowych oraz modele neuronowe. Predykcja określa przewidywanie przyszłych cech statystycznych zdarzeń losowych, które można zmierzyć. Wyznacza prognozy dla maksymalizacji. Korzyści, jakie wynikają z prognozowania, to: porównywanie, grupowanie, analizowanie zmienności, określania trendów oraz wyznaczania prognoz uzyskanych wyników, z wykorzystaniem optymalnego wektora zmiennych niezależnych predyktorów do wyciągania sukcesywnych wniosków.
The statistical approach allows the introduction of predictions of events or processes. Among these are linear and nonlinear regression models, time series models and neural models. Prediction is defined by the anticipation of future statistical characteristics of random events which can be measured, and designates forecasts for maximizing. The benefits which stem from prediction are comparison, grouping, analysis of variation, determinion of trends and setting forecasts of the results obtained with the use of an optimal vector of independent variables predictors for drawing successive conclusions.
Źródło:
Ogrody Nauk i Sztuk; 2015, 5; 203-211
2084-1426
Pojawia się w:
Ogrody Nauk i Sztuk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody aproksymacji indeksu ogona rozkładów alfa-stabilnych na przykładzie GPW w Warszawie
Tail Index Approximation Methods of Alpha-stable Distributions on the Warsaw Stock
Autorzy:
Krężołek, Dominik
Powiązania:
https://bibliotekanauki.pl/articles/589913.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Analiza empiryczna
Metody estymacji
Metody statystyczne
Papiery wartościowe
Prognozowanie notowań giełdowych
Empirical analysis
Estimation methods
Securities
Statistical methods
Stock exchange prediction
Opis:
The main purpose of this paper is to present some estimation methods of parameters of alpha-stable distributions. Two classes of methods are presented: the classical Maximum Likelihood Method and non-classical ones: Quantile Methods and Tail Exponent Estimation (based on Hill estimator). The results show significant difference in values of stability index depending on estimation method. The choice of method may significantly affect investment decisions.
Źródło:
Studia Ekonomiczne; 2013, 162; 21-30
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies