Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Solid Oxide Fuel Cell system" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
A mathematical model of two-stage Solid Oxide Fuel Cell, SOFC, stacks for dynamic simulation of Combined Heat and Power system fed by natural gas
Autorzy:
Palus, Mateusz
Pianko-Oprych, Paulina
Powiązania:
https://bibliotekanauki.pl/articles/1849273.pdf
Data publikacji:
2021
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
dynamic model
natural gas
Solid Oxide Fuel Cell stacks
Combined Heat and Power
CHP
system
Balance of Plant
BoP
modelling
Catalytic Partial Oxidation
CPOx
reformer
steam reformer
Opis:
Zero-dimensional two-stage SOFC stacks dynamic model was developed to investigate the effect of operating parameters on stacks performance. The model resolves spatially thermal and thermo-electrochemical behaviour for electrochemical reactions, Catalytic Partial Oxidation and Steam Reforming processes. Design variables and thermo-electrochemical properties were obtained from in-house-fabricated SOFCs carried out by project partners. The completed SOFCs based Combined Heat and Power, CHP, system model was validated by data18 and numerical results obtained at steady-state mode showing its high-fidelity. A parametric study with respect to key operating parameters including changes in fuel utilization, lambda number and current density values was conducted. The global CHP system dynamic response, in term of the current/voltage delivered by two-stage SOFC stacks, under a fi xed fuel utilization, has been determined resulting in greater variations in the voltage of a single cell in the first stack in comparison to the corresponding values in the second stack.
Źródło:
Polish Journal of Chemical Technology; 2021, 23, 2; 1-11
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A mathematical model of two-stage Solid Oxide Fuel Cell, SOFC, stacks for dynamic simulation of Combined Heat and Power system fed by natural gas
Autorzy:
Palus, Mateusz
Pianko-Oprych, Paulina
Powiązania:
https://bibliotekanauki.pl/articles/1849268.pdf
Data publikacji:
2021
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
dynamic model
natural gas
Solid Oxide Fuel Cell stacks
Combined Heat and Power
CHP
system
Balance of Plant
BoP
modelling
Catalytic Partial Oxidation
CPOx
reformer
steam reformer
Opis:
Zero-dimensional two-stage SOFC stacks dynamic model was developed to investigate the effect of operating parameters on stacks performance. The model resolves spatially thermal and thermo-electrochemical behaviour for electrochemical reactions, Catalytic Partial Oxidation and Steam Reforming processes. Design variables and thermo-electrochemical properties were obtained from in-house-fabricated SOFCs carried out by project partners. The completed SOFCs based Combined Heat and Power, CHP, system model was validated by data18 and numerical results obtained at steady-state mode showing its high-fidelity. A parametric study with respect to key operating parameters including changes in fuel utilization, lambda number and current density values was conducted. The global CHP system dynamic response, in term of the current/voltage delivered by two-stage SOFC stacks, under a fi xed fuel utilization, has been determined resulting in greater variations in the voltage of a single cell in the first stack in comparison to the corresponding values in the second stack.
Źródło:
Polish Journal of Chemical Technology; 2021, 23, 2; 1-11
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical analysis of a serial connection of two staged SOFC stacks in a CHP system fed by methane using Aspen TECH
Autorzy:
Pianko-Oprych, Paulina
Palus, Mateusz
Powiązania:
https://bibliotekanauki.pl/articles/779502.pdf
Data publikacji:
2019
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
Solid Oxide Fuel Cell stacks
Combined Heat and Power system
Balance of Plant
BoP
modelling
methane
Catalytic Partial Oxidation
CPOx
reformer
steam reformer
part and full load
steady state
dynamic model
Opis:
The objective of the study was to develop a steady-state system model in Aspen TECH using user-defined subroutines to predict the SOFC electrochemical performance. In order to achieve high overall fuel utilization and thus high electrical efficiency, a concept of Combined Heat and Power system with two-stage SOFC stacks of different number of cells was analyzed. The concept of two-stage SOFC stacks based system was developed in the framework of the FP7 EU-funded project STAGE-SOFC. The model was validated against data gathered during the operation of the proof-of-concept showing good agreement with the comparative simulation data. Following model validation, further simulations were performed for different values of fuel utilization to analyze its influence on system electrical performance. Simulation results showed that the concept of two-stage SOFC stacks configuration was viable and reliable. The model can be useful for development the optimal control strategy for system under safe conditions.
Źródło:
Polish Journal of Chemical Technology; 2019, 21, 1; 33-43
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A review of the numerical studies on planar and tubular solid oxide fuel cells within four EU projects of the 7th framework programme
Autorzy:
Pianko-Oprych, P.
Jaworski, Z.
Zinko, T.
Palus, M.
Powiązania:
https://bibliotekanauki.pl/articles/185086.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Solid Oxide Fuel Cell
stack
fuel cell system
Computational Fluid Dynamics
CFD
Finite Element Method
FEM
modelling
process simulation
ogniwo paliwowe z tlenkiem stałym
system ogniw paliwowych
obliczeniowa dynamika płynów
metoda elementów skończonych
MES
modelowanie symulacje procesu
Opis:
The paper addresses the issues of quantification and understanding of Solid Oxide Fuel Cells (SOFC) based on numerical modelling carried out under four European, EU, research projects from the 7FP within the Fuel Cell and Hydrogen Joint Undertaking, FCH JU, activities. It is a short review of the main projects’ achievements. The goal was to develop numerical analyses at a single cell and stack level. This information was integrated into a system model that was capable of predicting fuel cell phenomena and their effect on the system behaviour. Numerical results were analysed and favourably compared to experimental results obtained from the project partners. At the single SOFC level, a static model of the SOFC cell was developed to calculate output voltage and current density as functions of fuel utilisation, operational pressure and temperature. At the stack level, by improving fuel cell configuration inside the stack and optimising the operation conditions, thermal stresses were decreased and the lifetime of fuel cell systems increased. At the system level, different layouts have been evaluated at the steady-state and by dynamic simulations. Results showed that increasing the operation temperature and pressure improves the overall performance, while changes of the inlet gas compositions improve fuel cell performance.
Źródło:
Chemical and Process Engineering; 2018, 39, 4; 377--393
0208-6425
2300-1925
Pojawia się w:
Chemical and Process Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation of SOFCs based power generation system using Aspen
Autorzy:
Pianko-Oprych, P.
Palus, M.
Powiązania:
https://bibliotekanauki.pl/articles/778251.pdf
Data publikacji:
2017
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
Solid Oxide Fuel Cell system
modelling
methane
reforming
CPOx
Opis:
This study presents a thermodynamic Aspen simulation model for Solid Oxide Fuel Cells, SOFCs, based power generation system. In the first step, a steady-state SOFCs system model was developed. The model includes the electrochemistry and the diffusion phenomena. The electrochemical model gives good agreement with experimental data in a wide operating range. Then, a parametric study has been conducted to estimate effects of the oxygen to carbon ratio, O/C, on reformer temperature, fuel cell temperature, fuel utilization, overall fuel cell performance, and the results are discussed in this paper. In the second step, a dynamic analysis of SOFCs characteristic has been developed. The aim of dynamic modelling was to find the response of the system against the fuel utilization and the O/C ratio variations. From the simulations, it was concluded that both developed models in the steady and dynamic state were reasonably accurate and can be used for system level optimization studies of the SOFC based power generation system.
Źródło:
Polish Journal of Chemical Technology; 2017, 19, 4; 8-15
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies