- Tytuł:
- The Slater and Sub-k-Domination Number of a Graph with Applications to Domination and k-Domination
- Autorzy:
-
Amos, David
Asplund, John
Brimkov, Boris
Davila, Randy - Powiązania:
- https://bibliotekanauki.pl/articles/32083827.pdf
- Data publikacji:
- 2020-02-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
Slater number
domination number
sub- k -domination number
k -domination number
degree sequence index strategy - Opis:
- In this paper we introduce and study a new graph invariant derived from the degree sequence of a graph G, called the sub-k-domination number and denoted subk(G). This invariant serves as a generalization of the Slater number; in particular, we show that subk(G) is a computationally efficient sharp lower bound on the k-domination number of G, and improves on several known lower bounds. We also characterize the sub-k-domination numbers of several families of graphs, provide structural results on sub-k-domination, and explore properties of graphs which are subk(G)-critical with respect to addition and deletion of vertices and edges.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 209-225
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki