Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sangan iron mine" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Prediction of penetration rate of rotary-percussive drilling using artificial neural networks – a case study
Prognozowanie postępu wiercenia przy użyciu wiertła udarowo-obrotowego przy wykorzystaniu sztucznych sieci neuronowych – studium przypadku
Autorzy:
Aalizad, S. A.
Rashidinejad, F.
Powiązania:
https://bibliotekanauki.pl/articles/219500.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
prędkość wiercenia
wiertło obrotowo-udarowe
sztuczne sieci neuronowe
urządzenia udarowe
kopalnia rud żelaza Sangan
penetration rate
rotary-percussive drilling
artificial neural networks
top hammer drilling
Sangan iron mine
Opis:
Penetration rate in rocks is one of the most important parameters of determination of drilling economics. Total drilling costs can be determined by predicting the penetration rate and utilized for mine planning. The factors which affect penetration rate are exceedingly numerous and certainly are not completely understood. For the prediction of penetration rate in rotary-percussive drilling, four types of rocks in Sangan mine have been chosen. Sangan is situated in Khorasan-Razavi province in Northeastern Iran. The selected parameters affect penetration rate is divided in three categories: rock properties, drilling condition and drilling pattern. The rock properties are: density, rock quality designation (RQD), uni-axial compressive strength, Brazilian tensile strength, porosity, Mohs hardness, Young modulus, P-wave velocity. Drilling condition parameters are: percussion, rotation, feed (thrust load) and flushing pressure; and parameters for drilling pattern are: blasthole diameter and length. Rock properties were determined in the laboratory, and drilling condition and drilling pattern were determined in the field. For create a correlation between penetration rate and rock properties, drilling condition and drilling pattern, artificial neural networks (ANN) were used. For this purpose, 102 blastholes were observed and drilling condition, drilling pattern and time of drilling in each blasthole were recorded. To obtain a correlation between this data and prediction of penetration rate, MATLAB software was used. To train the pattern of ANN, 77 data has been used and 25 of them found for testing the pattern. Performance of ANN models was assessed through the root mean square error (RMSE) and correlation coefficient (R2). For optimized model (14-14-10-1) RMSE and R2 is 0.1865 and 86%, respectively, and its sensitivity analysis showed that there is a strong correlation between penetration rate and RQD, rotation and blasthole diameter. High correlation coefficient and low root mean square error of these models showed that the ANN is a suitable tool for penetration rate prediction.
Postęp wiercenia przy wierceniach skał jest jednym z podstawowych parametrów decydujących o opłacalności przedsięwzięcia. Całkowite koszty prowadzenia prac wiertniczych określa się w oparciu o prognozowane tempo postępu wiercenia, parametr ten uwzględnia się następnie przy planowaniu prac wydobywczych. Niektóre spośród licznych czynników wpływających na postęp wiercenia przy użyciu wiertła obrotowo-udarowego nie zostały jeszcze w pełni rozpoznane. Przy prognozowaniu postępu wiercenia prowadzonego przy użyciu urządzeń udarowo-obrotowych uwzględniono cztery rodzaje skał obecnych w kopalni Sangan, leżącej w prowincji Khorasan-Razavi w północno -wschodniej części Iranu. Wybrane czynniki mające wpływ na postęp prac wiertniczych pogrupowano w trzy kategorie: właściwości skał, warunki prowadzenia prac wiertniczych oraz plan prowadzenia wiercenia. Parametry określające właściwości skał to gęstość, jakość skał (RQD) i wytrzymałość na ściskanie jednoosiowe, wytrzymałość skał otrzymywana w oparciu o test brazylijski, porowatość, twardość Mohra, moduł Younga, prędkość propagacji fali, Parametry określające warunki prowadzenia wierceń obejmują: udar, prędkość obrotowa, siła naporu, ciśnienie płukania, zaś parametry związane z planem prowadzenia wiercenia obejmują: wymiary otworu wiertniczego i długość. Właściwości skał określono laboratoryjnie, warunki i plan wierceń badano w terenie. Korelacji pomiędzy prędkością postępu wiercenia i właściwościami skał oraz warunkami i planem prac wiertniczych poszukiwano przy użyciu sztucznych sieci neuronowych (ANN). Zbadano 102 otwory wiertnicze, przeanalizowano warunki prowadzenia wierceń, plany prac i zarejestrowano czasy ich prowadzenia. W celu znalezienia korelacji pomiędzy tymi danymi a prognozowaną prędkością wiercenia wykorzystano oprogramowanie MATLAB. W treningu sieci neuronowej wykorzystano 77 danych, 25 z nich otrzymano w drodze testowania wzorca. Wyniki działania sieci neuronowych oceniono w oparciu o błąd średniokwadratowy (RMSE) oraz współczynnik korelacji (R2). Dla zoptymalizowanego modelu (14-14-10-1) błąd średniokwadratowy i współczynnik korelacji wynoszą odpowiednio 0.1865 i 86%. Analiza wrażliwości wykazała istnienie silnej korelacji pomiędzy prędkością wiercenia a jakością skały, prędkością obrotową wiertła i średnicą otworu wiertniczego. Wysoki współczynnik korelacji i niska wartość błędu średniokwadratowego otrzymana dla tych modeli wskazuje, że metody wykorzystujące sztuczne sieci neuronowe są odpowiednie do prognozowania prędkości wiercenia.
Źródło:
Archives of Mining Sciences; 2012, 57, 3; 715-728
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of backbreak in open pit blasting by Adaptive Neuro-Fuzzy Inference System
Prognozowanie spękań skał przy pracach strzałowych w kopalniach odkrywkowych przy użyciu metod neuronowych i wnioskowania rozmytego (ANFIS) zastosowanych w modelu adaptywnym
Autorzy:
Bazzazi, A. A.
Esmaeili, M.
Powiązania:
https://bibliotekanauki.pl/articles/219044.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
prace strzałowe
pękanie skał
system wnioskowania wykorzystujący elementy sieci neuronowych i logiki rozmytej
kopalnia rud żelaza Sangan
blasting
backbreak
adaptive neuro-fuzzy inference system
Sangan iron mine
Opis:
Adaptive neuro-fuzzy inference system (ANFIS) is powerful model in solving complex problems. Since ANFIS has the potential of solving nonlinear problem and can easily achieve the input-output mapping, it is perfect to be used for solving the predicting problem. Backbreak is one of the undesirable effects of blasting operations causing instability in mine walls, falling down the machinery, improper fragmentation and reduction in efficiency of drilling. In this paper, ANFIS was applied to predict backbreak in Sangan iron mine of Iran. The performance of the model was assessed through the root mean squared error (RMSE), the variance account for (VAF) and the correlation coefficient (R2) computed from the measured of backbreak and model-predicted values of the dependent variables. The RMSE, VAF, R2 indices were calculated 0.6, 0.94 and 0.95 for ANFIS model. As results, these indices revealed that the ANFIS model has very good prediction performance.
Adaptywny system wnioskowania wykorzystujący elementy sieci neuronowych i logiki rozmytej (ANFIS) stanowi potężny narzędzie do rozwiązywania złożonych problemów. Ponieważ model ANFIS może być wykorzystywany do rozwiązywania problemów nieliniowych i umożliwia wygodne przedstawienie problemu w formie: wejście - wyjście, jest idealnym narzędziem do rozwiązywania problemów związanych z prognozowaniem. Pękanie skał w odkrywce jest jednym z niekorzystnych skutków prowadzenia prac strzałowych, powoduje niestabilność ścian, uszkodzenia maszyn i urządzeń, nieodpowiednią fragmentację skał oraz prowadzi do obniżenia efektywności wierceń. W pracy przedstawiono zastosowanie systemu ANFIS do prognozowania pękań skał w kopalni rud żelaza w Sangan (Iran). Działanie modelu zbadano na podstawie wartości błędu średniokwadratowego (RMSE), wariancji (VAF) i współczynnika korelacji (R2) obliczonego na podstawie pomiarów pęknięć skał i wartości uzyskanych z modelowania. Wartości wskaźników RMSE, VAF i R2 obliczonych przy użyciu modelu ANFIS wynoszą odpowiednio 0.6, 0.94 i 0.95. Wielkości te wyraźnie potwierdzają wysoką skuteczność modelu.
Źródło:
Archives of Mining Sciences; 2012, 57, 4; 933-943
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies