Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Salp Swarm Algorithm" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Constrained optimization of the brushless DC motor using the salp swarm algorithm
Autorzy:
Knypiński, Łukasz
Devarepalli, Ramesh
Le Menach, Yvonnick
Powiązania:
https://bibliotekanauki.pl/articles/2135734.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
brushless DC motor
constrained optimization
finite element analysis
salp swarm algorithm
Opis:
This paper presents an algorithm and optimization procedure for the optimization of the outer rotor structure of the brushless DC (BLDC) motor. The optimization software was developed in the Delphi Tiburón development environment. The optimization procedure is based on the salp swarm algorithm. The effectiveness of the developed optimization procedurewas compared with genetic algorithm and particle swarmoptimization algorithm. The mathematical model of the device includes the electromagnetic field equations taking into account the non-linearity of the ferromagnetic material, equations of external supply circuits and equations of mechanical motion. The external penalty function was introduced into the optimization algorithm to take into account the non-linear constraint function.
Źródło:
Archives of Electrical Engineering; 2022, 71, 3; 775--787
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel variant of the salp swarm algorithm for engineering optimization
Autorzy:
Jia, Fuyun
Luo, Sheng
Yin, Guan
Ye, Yin
Powiązania:
https://bibliotekanauki.pl/articles/23944824.pdf
Data publikacji:
2023
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
salp swarm algorithm
meta-heuristic algorithm
chaos theory
sine-cosine mechanism
quantum computation
optimization design of engineering
Opis:
There are many design problems need to be optimized in various fields of engineering, and most of them belong to the NP-hard problem. The meta-heuristic algorithm is one kind of optimization method and provides an effective way to solve the NP-hard problem. Salp swarm algorithm (SSA) is a nature-inspired algorithm that mimics and mathematically models the behavior of slap swarm in nature. However, similar to most of the meta-heuristic algorithms, the traditional SSA has some shortcomings, such as entrapment in local optima. In this paper, the three main strategies are adopted to strengthen the basic SSA, including chaos theory, sine-cosine mechanism and the principle of quantum computation. Therefore, the SSA variant is proposed in this research, namely SCQ-SSA. The representative benchmark functions are employed to test the performances of the algorithms. The SCQ-SSA are compared with the seven algorithms in high-dimensional functions (1000 dimensions), seven SSA variants and six advanced variants on benchmark functions, the experiment reveals that the SCQ-SSA enhances resulting precision and alleviates local optimal problems. Besides, the SCQ-SSA is applied to resolve three classical engineering problems: tubular column design problem, tension/compression spring design problem and pressure vessel design problem. The design results indicate that these engineering problems are optimized with high accuracy and superiority by the improved SSA. The source code is available in the URL: https://github.com/ye-zero/SCQSSA/tree/main/SCQ-SSA.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2023, 13, 3; 131--149
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Allocation of real power generation based on computing over all generation cost: an approach of Salp Swarm Algorithm
Autorzy:
Devarapalli, Ramesh
Sinha, Nikhil Kumar
Rao, Bathina Venkateswara
Knypiński, Łukasz
Lakshmi, Naraharisetti Jaya Naga
García Márquez, Fausto Pedro
Powiązania:
https://bibliotekanauki.pl/articles/1841291.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
economic load dispatch
heuristic algorithms
optimization
Particle Swarm
Algorithm
Salp Swarm Algorithm
ekonomiczna wysyłka ładunku
algorytmy heurystyczne
optymalizacja
rój cząstek
algorytm
Opis:
Economic Load Dispatch (ELD) is utilized in finding the optimal combination of the real power generation that minimizes total generation cost, yet satisfying all equality and inequality constraints. It plays a significant role in planning and operating power systems with several generating stations. For simplicity, the cost function of each generating unit has been approximated by a single quadratic function. ELD is a subproblem of unit commitment and a nonlinear optimization problem. Many soft computing optimization methods have been developed in the recent past to solve ELD problems. In this paper, the most recently developed population-based optimization called the Salp Swarm Algorithm (SSA) has been utilized to solve the ELD problem. The results for the ELD problem have been verified by applying it to a standard 6-generator system with and without due consideration of transmission losses. The finally obtained results using the SSA are compared to that with the Particle Swarm Optimization (PSO) algorithm. It has been observed that the obtained results using the SSA are quite encouraging.
Źródło:
Archives of Electrical Engineering; 2021, 70, 2; 337-349
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies