Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "SVM Support Vector Machine" wg kryterium: Temat


Tytuł:
How To Construct Support Vector Machines Without Breaching Privacy
Autorzy:
Zhan, J.
Chang, L.
Matwin, S.
Powiązania:
https://bibliotekanauki.pl/articles/92993.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
privacy
security
support vector machine (SVM)
Opis:
This paper addresses the problem of data sharing among multiple parties in the following scenario: without disclosing their private data to each other, multiple parties, each having a private data set, want to collaboratively construct support vector machines using a linear, polynomial or sigmoid kernel function. To tackle this problem, we develop a secure protocol for multiple parties to conduct the desired computation. In our solution, multiple parties use homomorphic encryption and digital envelope techniques to exchange the data while keeping it private. All the parties are treated symmetrically: they all participate in the encryption and in the computation involved in learning support vector machines.
Źródło:
Studia Informatica : systems and information technology; 2006, 1(7); 233-244
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of electromagnetic filtration efficiency using least squares support vector model
Autorzy:
Yuceer, M.
Yildiz, Z.
Abbasov, T.
Powiązania:
https://bibliotekanauki.pl/articles/110758.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
electromagnetic filtration
disperse systems
support vector machine (SVM)
Opis:
The present study aims to apply a least squares support vector model (LS–SVM) for predicting cleaning efficiency of an electromagnetic filtration process, also called quality factor, in order to remove corrosion particles (rust) of low concentrations from water media. For this purpose, three statistical parameters: correlation coefficient, root mean squared error and mean absolute percentage error were calculated for evaluating the performance of the LS–SVM model. It was found that the developed LS–SVM can be used to predict the effectiveness of electromagnetic filtration process.
Źródło:
Physicochemical Problems of Mineral Processing; 2015, 51, 1; 173-180
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of new method of initialisation of neuro - fuzzy systems with support vector machines
Analiza nowej metody inicjalizacji systemów neuronowo – rozmytych z wykorzystaniem maszyn wektorów wspierających
Autorzy:
Simiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/375675.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
support vector machine (SVM)
neuro-fuzzy systems
classification
regression
Opis:
The correspondence between support vector machines and neuro-fuzzy systems is very interesting. The full equivalence for classification and partial for regression has been formally shown. The equivalence has very interesting implication. It is a base for a new method of initialization of neurofuzzy systems, ie. for creating of fuzzy rule base. The commonly used methods are based on reversion of item: the premises of fuzzy rules split input domain into region, thus premises of fuzzy rules can be elaborated by partition of input domain. This leads to three main classes of partition of input domain. The above mentioned equivalence results in new way of creating the rule base. Now the input domain is not partitioned, but the premises of fuzzy rules are extracted from support vector. The objective of the paper is to examine the advantages and disadvantages of this new method for creation of fuzzy rule bases for neuro-fuzzy systems.
Związek pomiedzy maszynami wektorów podpierajacych i systemami neuronoworozmytymi jest bardzo interesujący. Została wykazana pełna odpowiedniość między tymi systemami dla klasyfikacji i częściowa dla regresji. Odpowiedność ta ma bardzo ważną konsekwencję. Jest podstawa do opracowania nowego sposobu tworzenia bazy reguł dla systemu neuronowo-rozmytego. Dotychczasowe metody opieraja się na podziale przestrzeni wejściowej, a następnie przekształcenia tak powstałych regionów w przesłanki rozmytych reguł. Tutaj możliwe jest przekształcanie wektorów wspierających na przesłanki reguł rozmytych. Celem artykułu jest przebadanie możliwości stosowania takiego podejścia do inicjalizacji systemów neuronowo-rozmytych. Eksperymenty wykazują dosć istotną wadę tego podejścia. W jego wyniku powstają bardzo liczne zbiory reguł rozmytych, co zupełnie przeczy idei interpretowalności wiedzy w systemach neuronowo-rozmytych. Manipulacja pewnymi parametrami umożliwia zmiejszenie liczby reguł, jednak manipulacja ta jest trudna i wymaga wielu prób. Drugą dość istotna wadą jest wyraźnie wyższy błąd wypracowywany przez systemy inicjalizowane przez SVM w porównaniu do systemów, których bazy reguł tworzone sa˛ poprzez podział przestrzeni wejściowej.
Źródło:
Theoretical and Applied Informatics; 2012, 24, 3; 243-254
1896-5334
Pojawia się w:
Theoretical and Applied Informatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine-Learning Methods for Assessing Dynamic Resistance of Existing Bridge Structures Subjected to Mining Tremors
Metody uczenia maszynowego w ocenie odporności dynamicznej istniejących obiektów mostowych poddanych wstrząsom górniczym
Autorzy:
Rusek, J.
Powiązania:
https://bibliotekanauki.pl/articles/385657.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
dynamika budowli
uczenie maszynowe
sztuczne sieci neuronowe
SVM
wstrząsy górnicze
odporność dynamiczna
mosty
dynamics of structures
machine learning
Artificial Neural Networks
SVM Support Vector Machine
mining tremors
dynamic resistance
bridges
Opis:
W pracy przedstawiono wyniki badań, których celem było utworzenie modelu pozwalającego na określenie odporności istniejących obiektów mostowych na wpływy wstrząsów górniczych. Podstawą do analiz była utworzona przez autora baza danych o odporności dynamicznej żelbetowych obiektów mostowych poddanych wymuszeniu sejsmicznemu charakterystycznemu dla terenu Legnicko-Głogowskiego Okręgu Miedziowego (LGOM). Odporność dynamiczna każdego obiektu w bazie danych została wyrażona w postaci granicznych wartości przyspieszeń drgań gruntu, jakie dana konstrukcja może przejąć bez zagrożenia bezpieczeństwa. Badania przeprowadzono, wykorzystując metodę Support Vector Machine (SVM) w ujęciu regresyjnym (SVR – Support Vector Regression) oraz sztuczne sieci neuronowe (ANN – Artificial Neural Network). Utworzone w ten sposób modele porównano w aspekcie jakości predykcji oraz uogólniania nabytej wiedzy. Pozwoliło to na wytypowanie metody najbardziej efektywnej pod względem oceny odporności dynamicznej istniejących obiektów mostów.
This paper demonstrates the results of research studies aimed at creating a model that allows to determine the resistance of existing bridge structures to the impact of mining tremors. A database (created by the author of this article) of the dynamic resistance of reinforced concrete bridge structures subjected to seismic excitations commonly occurring in the Legnica-Głogów Copper District (LGOM) formed the basis for the analysis. The dynamic resistance of each structure contained in the database was expressed as the limit values of the acceleration of ground vibrations that may be carried by a given structure without compromising its safety. The study was carried out using the Support Vector Machine (SVM) method in a Support Vector Regression (SVR) approach as well as an Artificial Neural Network (ANN). The models were compared in terms of the quality of the predictions and generalization of the acquired knowledge. This allows to select the most-effective method in evaluating the dynamic resistance of existing bridge structures.
Źródło:
Geomatics and Environmental Engineering; 2018, 12, 1; 109-120
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fast near-infrared palmprint recognition using nonnegative matrix factorization extreme learning machine
Autorzy:
Xu, X.
Zhang, X.
Lu, L.
Deng, W.
Zuo, K
Powiązania:
https://bibliotekanauki.pl/articles/173572.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
extreme learning machine
palmprint recognition
superior speed
support vector machine (SVM)
Opis:
Support vector machine and artificial neural network are widely used in classification applications. Extreme learning machine (ELM) is a novel and efficient learning algorithm based on the generalized single hidden layer feed forward networks, which performs well in classification applications. The research results have shown the superiority of ELM with the existing classical algorithms: support vector machine (SVM) and back propagation neural network. In this study, we firstly propose a novel nonnegative matrix factorization extreme learning machine (NMFELM) to improve the performance of standard ELM method. Then we propose a novel near-infrared palmprint recognition approach based on NMFELM classifier. As the test data, we use the near-infrared palmprint database provided by Hong Kong Polytechnic University. The experimental results demonstrate that the proposed NMFELM method outperforms the standard ELM- and SVM-based methods.
Źródło:
Optica Applicata; 2014, 44, 2; 285-298
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implementation of Bilinear Separation algorithm as a classification method for SSVEP-based brain-computer interface
Autorzy:
Jukiewicz, M.
Cysewska-Sobusiak, A.
Powiązania:
https://bibliotekanauki.pl/articles/114357.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
brain-computer interface
SSVEP
bilinear separation
support vector machine (SVM)
Opis:
: The aim of this study was to create a two-class brain-computer interface. As in the case of research on SSVEP stimuli flashing at different frequencies were presented to four subjects. Optimal SSVEP recognition results can be obtained from electrodes: O1, O2 and Oz. In this work SVM classifier with Bilinear Separation algorithm have been compared. The best result in the offline tests using Bilinear Separation was: average accuracy of stimuli recognition 93% and ITR 33.1 bit/min, SVM: 90% and 32.8 bit/min.
Źródło:
Measurement Automation Monitoring; 2015, 61, 2; 51-53
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Faults Classification Of Power Electronic Circuits Based On A Support Vector Data Description Method
Autorzy:
Cui, J.
Powiązania:
https://bibliotekanauki.pl/articles/220938.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
power electronic circuits
fault classification
support vector data description
support vector machine (SVM)
Opis:
Power electronic circuits (PECs) are prone to various failures, whose classification is of paramount importance. This paper presents a data-driven based fault diagnosis technique, which employs a support vector data description (SVDD) method to perform fault classification of PECs. In the presented method, fault signals (e.g. currents, voltages, etc.) are collected from accessible nodes of circuits, and then signal processing techniques (e.g. Fourier analysis, wavelet transform, etc.) are adopted to extract feature samples, which are subsequently used to perform offline machine learning. Finally, the SVDD classifier is used to implement fault classification task. However, in some cases, the conventional SVDD cannot achieve good classification performance, because this classifier may generate some so-called refusal areas (RAs), and in our design these RAs are resolved with the one-against-one support vector machine (SVM) classifier. The obtained experiment results from simulated and actual circuits demonstrate that the improved SVDD has a classification performance close to the conventional one-against-one SVM, and can be applied to fault classification of PECs in practice.
Źródło:
Metrology and Measurement Systems; 2015, 22, 2; 205-220
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fall Detector Using Discrete Wavelet Decomposition And SVM Classifier
Autorzy:
Wójtowicz, B.
Dobrowolski, A.
Tomczykiewicz, K.
Powiązania:
https://bibliotekanauki.pl/articles/220495.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fall detection
discrete wavelet transform
data fusion
support vector machine (SVM)
Opis:
This paper presents the design process and the results of a novel fall detector designed and constructed at the Faculty of Electronics, Military University of Technology. High sensitivity and low false alarm rates were achieved by using four independent sensors of varying physical quantities and sophisticated methods of signal processing and data mining. The manuscript discusses the study background, hardware development, alternative algorithms used for the sensor data processing and fusion for identification of the most efficient solution and the final results from testing the Android application on smartphone. The test was performed in four 6-h sessions (two sessions with female participants at the age of 28 years, one session with male participants aged 28 years and one involving a man at the age of 49 years) and showed correct detection of all 40 simulated falls with only three false alarms. Our results confirmed the sensitivity of the proposed algorithm to be 100% with a nominal false alarm rate (one false alarm per 8 h).
Źródło:
Metrology and Measurement Systems; 2015, 22, 2; 303-314
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft Sensing Method Of LS-SVM Using Temperature Time Series For Gas Flow Measurements
Autorzy:
Xu, W.
Fan, Z.
Cai, M.
Shi, Y.
Tong, X.
Sun, J.
Powiązania:
https://bibliotekanauki.pl/articles/221824.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
gas flow
soft sensor
support vector machine (SVM)
temperature time series
Opis:
This paper proposes a soft sensing method of least squares support vector machine (LS-SVM) using temperature time series for gas flow measurements. A heater unit has been installed on the external wall of a pipeline to generate heat pulses. Dynamic temperature signals have been collected upstream of the heater unit. The temperature time series are the main secondary variables of soft sensing technique for estimating the flow rate. A LS-SVM model is proposed to construct a non-linear relation between the flow rate and temperature time series. To select its inputs, parameters of the measurement system are divided into three categories: blind, invalid and secondary variables. Then the kernel function parameters are optimized to improve estimation accuracy. The experiments have been conducted both in the single-pulse and multiple-pulse heating modes. The results show that estimations are acceptable.
Źródło:
Metrology and Measurement Systems; 2015, 22, 3; 383-392
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Eclectic Approach to Network Service Failure Detection Based on Multicriteria Analysis with an Example of Mixing Probabilistic Context Free Grammar Models
Autorzy:
Białoń, P.
Powiązania:
https://bibliotekanauki.pl/articles/307950.pdf
Data publikacji:
2008
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
failure detection
linear separation
probabilistic context free grammars
support vector machine (SVM)
Opis:
A method of failure detection in telecommunication networks is presented. This is a meta-method that correlates alarms raised by failure-detection modules based on various philosophies. The correlation takes into account two main characteristics of each module and the whole metamethod: the percentage of false alarms and the percentage of omitted failures. The trade-off between them is tackled with aspiration-based multicriteria analysis. The alarms are correlated using linear classification by support vector machines. An example of the profitability of correlating alarms in such way is shown. This is an example of probabilistic context free grammars (PCFGs), used to model the proper runtime paths of network services (and thus usable for detecting an improper behavior of the services). It is shown that the linearly mixing PCFGs can add context handling to the PCFG model, thus augmenting the capabilities of the model.
Źródło:
Journal of Telecommunications and Information Technology; 2008, 4; 32-39
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A linear Support Vector Machine solver for a large number of training examples
Autorzy:
Białoń, P.
Powiązania:
https://bibliotekanauki.pl/articles/970794.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
support vector machine (SVM)
analytic center cutting plane method
RAM volume required
Opis:
A new linear Support Vector Machine algorithm and solver are presented. The algorithm is in a twofold way well-suited for problems with a large number of training examples. First, unlike many optimization algorithms, it does not simultaneously keep all the examples in RAM and thus does not exhaust the memory (moreover, it smartly passes through disk files storing the data: two mechanisms reduce the computation time by disregarding some input data without a loss in solution quality). Second, it uses the analytical center cutting plane scheme, appearing as more efficient for hard parameter settings than the Kelley's scheme used in other solvers, like SVM_perf. The experiments with both real-life and artificial examples are described. In one of them the solver proved to be capable of solving a problem with one billion training examples. A critical analysis of the complexity of SVM_perf is given.
Źródło:
Control and Cybernetics; 2009, 38, 1; 281-300
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A real-valued genetic algorithm to optimize the parameters of support vector machine for classification of multiple faults in NPP
Autorzy:
Amer, F. Z.
El-Garhy, A. M.
Awadalla, M. H.
Rashad, S. M.
Abdien, A. K.
Powiązania:
https://bibliotekanauki.pl/articles/147652.pdf
Data publikacji:
2011
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
support vector machine (SVM)
fault classification
multi fault classification
genetic algorithm (GA)
machine learning
Opis:
Two parameters, regularization parameter c, which determines the trade off cost between minimizing the training error and minimizing the complexity of the model and parameter sigma (σ) of the kernel function which defines the non-linear mapping from the input space to some high-dimensional feature space, which constructs a non-linear decision hyper surface in an input space, must be carefully predetermined in establishing an efficient support vector machine (SVM) model. Therefore, the purpose of this study is to develop a genetic-based SVM (GASVM) model that can automatically determine the optimal parameters, c and sigma, of SVM with the highest predictive accuracy and generalization ability simultaneously. The GASVM scheme is applied on observed monitored data of a pressurized water reactor nuclear power plant (PWRNPP) to classify its associated faults. Compared to the standard SVM model, simulation of GASVM indicates its superiority when applied on the dataset with unbalanced classes. GASVM scheme can gain higher classification with accurate and faster learning speed.
Źródło:
Nukleonika; 2011, 56, 4; 323-332
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative Study of Supervised Learning Methods for Malware Analysis
Autorzy:
Kruczkowski, M.
Niewiadomska-Szynkiewicz, E.
Powiązania:
https://bibliotekanauki.pl/articles/309481.pdf
Data publikacji:
2014
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
data classification
k-Nearest Neighbors
malware analysis
Naive Bayes
support vector machine (SVM)
Opis:
Malware is a software designed to disrupt or even damage computer system or do other unwanted actions. Nowadays, malware is a common threat of the World Wide Web. Anti-malware protection and intrusion detection can be significantly supported by a comprehensive and extensive analysis of data on the Web. The aim of such analysis is a classification of the collected data into two sets, i.e., normal and malicious data. In this paper the authors investigate the use of three supervised learning methods for data mining to support the malware detection. The results of applications of Support Vector Machine, Naive Bayes and k-Nearest Neighbors techniques to classification of the data taken from devices located in many units, organizations and monitoring systems serviced by CERT Poland are described. The performance of all methods is compared and discussed. The results of performed experiments show that the supervised learning algorithms method can be successfully used to computer data analysis, and can support computer emergency response teams in threats detection.
Źródło:
Journal of Telecommunications and Information Technology; 2014, 4; 24-33
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Learning System by the Least Squares Support Vector Machine Method and its Application in Medicine
Autorzy:
Szewczyk, P.
Baszun, M.
Powiązania:
https://bibliotekanauki.pl/articles/307897.pdf
Data publikacji:
2011
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
classification
Grid-Search
particle swarm optimization (PSO)
patients diagnosis
support vector machine (SVM)
Opis:
In the paper it has been presented the possibility of using the least squares support vector machine to the initial diagnosis of patients. In order to find some optimal parameters making the work of the algorithm more detailed, the following techniques have been used: K-fold Cross Validation, Grid-Search, Particle Swarm Optimization. The result of the classification has been checked by some labels assigned by an expert. The created system has been tested on the artificially made data and the data taken from the real database. The results of the computer simulations have been presented in two forms: numerical and graphic. All the algorithms have been implemented in the C# language.
Źródło:
Journal of Telecommunications and Information Technology; 2011, 3; 109-113
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Accuracy Analysis Comparison of Supervised Classification Methods for Mapping Land Cover Using Sentinel 2 Images in the Al‑Hawizeh Marsh Area, Southern Iraq
Autorzy:
Alwan, Imzahim A.
Aziz, Nadia A.
Powiązania:
https://bibliotekanauki.pl/articles/1838006.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
land cover mapping
Sentinel 2
supervised classification
maximum likelihood
Support Vector Machine (SVM)
confusion matrix
Opis:
Land cover mapping of marshland areas from satellite images data is not a simple process, due to the similarity of the spectral characteristics of the land cover. This leads to challenges being encountered with some land covers classes, especially in wetlands classes. In this study, satellite images from the Sentinel 2B by ESA (European Space Agency) were used to classify the land cover of Al Hawizeh marsh/Iraq Iran border. Three classification methods were used aimed at comparing their accuracy, using multispectral satellite images with a spatial resolution of 10 m. The classification process was performed using three different algorithms, namely: Maximum Likelihood Classification (MLC), Artificial Neural Networks (ANN), and Support Vector Machine (SVM). The classification algorithms were carried out using ENVI 5.1 software to detect six land cover classes: deep water marsh, shallow water marsh, marsh vegetation (aquatic vegetation), urban area (built up area), agriculture area, and barren soil. The results showed that the MLC method applied to Sentinel 2B images provides a higher overall accuracy and the kappa coefficient compared to the ANN and SVM methods. Overall accuracy values for MLC, ANN, and SVM methods were 85.32%, 70.64%, and 77.01% respectively.
Źródło:
Geomatics and Environmental Engineering; 2021, 15, 1; 5-21
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies