Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "SOM" wg kryterium: Temat


Tytuł:
Zastosowanie metod czarnej skrzynki do prognozowania wartości wybranych wskaźników jakości ścieków dopływających do oczyszczalni komunalnej
Black-box forecasting of selected indicator values for influent wastewater quality in municipal treatment plant
Autorzy:
Szeląg, B.
Bartkiewicz, L.
Studziński, J.
Powiązania:
https://bibliotekanauki.pl/articles/236740.pdf
Data publikacji:
2016
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
ścieki komunalne
modelowanie
prognozowanie jakości ścieków metoda MARS
metoda lasów losowych (RF)
metoda samoorganizujących się sieci neuronowych (SOM)
metoda drzew wzmacnianych (BT) metoda analizy składowych
głównych (PCA)
sewage
modeling
sewage quality forecasting
MARS (multivariate adaptive regression spline)
random forest (RF)
self-organizing map (SOM)
boosted trees (BT)
principal component analysis (PCA)
Opis:
Prognozowanie ilości i jakości ścieków dopływających do oczyszczalni komunalnej z odpowiednim wyprzedzeniem czasowym daje możliwość optymalnego sterowania wieloma parametrami procesów oczyszczania ścieków. Dlatego prowadzi się badania mające na celu opracowanie modeli matematycznych (fizykalnych deterministycznych i operatorowych statystycznych), prognozujących zarówno ilość, jak i jakość ścieków dopływających do oczyszczalni. W artykule zbadano możliwość zastosowania prostszych modeli operatorowych do prognozowania wartości wybranych wskaźników jakości ścieków na dopływie do oczyszczalni (BZT5, zawiesiny ogólne, azot ogólny i amonowy, fosfor ogólny) jedynie na podstawie wyników pomiarów natężenia przepływu ścieków oraz – w celu porównania – na podstawie ich zmierzonych wartości. Do tego celu zastosowano metody czarnej skrzynki typu MARS oraz lasy losowe (RF). Dodatkowo przedstawiono możliwość połączenia metody lasów losowych z modelem klasyfikacyjnym (RF+SOM). Do identyfikacji danych określających zmienność wybranych wskaźników jakości ścieków zastosowano metody drzew wzmacnianych (BT) i analizy składowych głównych (PCA). Modele opracowano na podstawie wyników ciągłych pomiarów dobowych przeprowadzonych w latach 2013–2015 w oczyszczalni ścieków komunalnych w Rzeszowie.
Forecasting the amount and quality of wastewater flowing into a treatment plant sufficiently in advance, enables effective control of numerous treatment process parameters. Therefore, mathematical (physical deterministic and time series statistical) models forecasting both the amount and quality of wastewater inflow into a sewage treatment plant are under development. In this paper, a possibility of simpler time series models application to forecasting values of selected indicators (biochemical oxygen demand (BOD5), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and ammonium (NH4+)) of sewage quality in the inflow into a treatment plant was investigated. The research was based solely on sewage flow rate data and – for the purpose of comparison – the actual measured indicator values. For this purpose, MARS type black-box and random forest (RF) methods were used. Also, a possibility of combining the RF method with a classification model (RF+SOM) was investigated. Boosted trees (BT) and principal component analysis (PCA) methods were applied for identification of data that determine variability of the selected sewage quality indicators. The models were developed on the basis of continuous daily measurements performed in the period of 2013–2015 in the municipal sewage treatment plant in Rzeszow.
Źródło:
Ochrona Środowiska; 2016, 38, 4; 39-46
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zapewnienie ciągłości produkcji w dobie braku podzespołów elektronicznych
Ensuring Production Continuity in an Era of Electronic Component Shortages
Autorzy:
Pawłowicz, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/2174237.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
produkcja urządzeń elektronicznych
SoM
System on Module
podzespoły
kasownik biletów
electronics manufacturing
electronic components
ticket validator
Opis:
W artykule przedstawiono opis przypadku zapewnienia ciągłości produkcji urządzenia przeznaczonego do kasowania biletów przy niedoborach dostaw na rynku komponentów elektronicznych. Uwzględnione zostały kryteria podejmowanych decyzji i ich wpływ na projekt kasownika. Zaproponowano rozwiązania, które mogą zmniejszyć ryzyko wstrzymania produkcji przez wykorzystanie zamienników brakujących elementów z uwzględnieniem minimalizacji kosztów takich zmian.
The article presents a description of the case of ensuring the continuity of production of a ticket validator device in the presence of supply shortages in the market for electronic components. The criteria for decision-making and their impact on the design of the ticket validator are considered. Solutions are proposed that can reduce the risk of production stoppage by using replacements for missing components, taking into account the minimization of the cost of such changes.
Źródło:
Pomiary Automatyka Robotyka; 2022, 26, 4; 105--111
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowej Kohonena do wizualizacji danych MPG
Use of Kohonen neural network in MPG data visualisation
Autorzy:
Oszutowska-Mazurek, D. A.
Powiązania:
https://bibliotekanauki.pl/articles/135818.pdf
Data publikacji:
2016
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
sieć neuronowa Kohonena
samoorganizujące się mapy
SOM
wizualizacja danych
dane MPG
Kohonen neural network
self organizing map
Opis:
Wstęp i cel: Zastosowanie sieci neuronowych Kohonena zapewnia zmniejszenie wielowymiarowości danych. Wizualizacja w postaci map samoorganizujących się (SOM) jest użytecznym narzędziem do wstępnego kastrowania (grupowania) danych. Materiał i metody: Wizualizację przeprowadzona dla rzeczywistych danych, udostępnionych przez uniwersytet w Kalifornii za pomocą oprogramowania SNNS v.4.3. Głównym celem pracy jest zastosowanie sieci neuronowych Kohonena zapewniające zmniejszenie wielowymiarowości danych. Wyniki: Otrzymano wizualizacje danych wskazujące jednoznacznie na dodatnie i ujemne korelacje danych MPG. Wniosek: Mapy samoorganizujące się mogą być dedykowane wizualizacji danych wielowymiarowych jednak wyniki zależą od sposobu mapowania danych wejściowych, zwłaszcza o charakterze jakościowym, nawet jeśli stosowana jest normalizacja każdego z parametrów.
Introduction and aim: The use of Kohonen neural network ensures the decrease of data multidimensionality. Visualisation called Self organized maps is useful tool for preliminary data clustering. Material and methods: The visualisation of real data set was obtained with the use of program SNNS v.4.3 for real dataset from California University. The main aim of this paper is the use of Kohonen neural network to ensure the reduction of multidimensional data. Results: Obtained visualisations of data indicate unambiguously positive and negative correlations for MPG data Conclusion: Self organising maps could be dedicated to multidimensional data visualisation and preliminary quality assessment, but the results depend on the mapping method of input data, especially quantity type, even if normalisation of every parameter is provided.
Źródło:
Problemy Nauk Stosowanych; 2016, 4; 19-30
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe ANN : sieci Kohonena
Artificial neural networks (ANN) : Kohonen networks
Autorzy:
Iljaszewicz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/131981.pdf
Data publikacji:
2018
Wydawca:
Wrocławska Wyższa Szkoła Informatyki Stosowanej Horyzont
Tematy:
Sieci Kohonena
sieci neuronowe
mapa samoorganizująca
SOM
WEBSOM
Kohonen networks
artificial neural networks
ANN
Self Organizing Map
Opis:
Artykuł omawia sztuczne sieci neuronowe (ang. ANN- Artificial neural networks). Jedną z odmian są sieci Kohonena zwane Mapą Samoorganizującą (ang. SOM – Self Organizing Map) realizują one proces uczenia się sieci neuronowych samodzielnie tzn. rozpoznają relacje występujące w skupieniach poprzez wykrycie wewnętrznej struktury i kategoryzują je w procesie samouczenia. SOM służy do uformowania odwzorowania z przestrzeni wielowymiarowej do przestrzeni jednowymiarowej lub dwuwymiarowej. Główną cechą SOM jest to, że tworzy on nieliniową projekcję wielowymiarową kolektora danych na regularnej, niskowymiarowej (zwykle 2D) sieci. Na wyświetlaczu klastrowanie przestrzeni danych, jak również relacje metryczno-topologiczne elementów danych, są wyraźnie widoczne. Jeśli elementy danych są wektorami, składniki, których są zmiennymi z określone znaczenie, takie jak deskryptory danych statystycznych lub pomiary, które opisują proces, siatka SOM może być wykorzystana, jako podstawa, na której może znajdować się każda zmienna wyświetlane osobno przy użyciu kodowania na poziomie szarości lub pseudo koloru. Ten rodzaj projekcji został uznany za bardzo przydatny do zrozumienia wzajemnych zależności między zmiennymi, a także strukturami zbioru danych.
The article discusses artificial neural networks (ANN). One of the varieties is the Kohonen network, called the Self Organizing Map (SOM), that perform the learning process of neural networks independently, i.e. they recognize relationships occurring in clusters by detecting an internal structure and categorizing them in the process of self-learning. SOM is used to form mapping from a multidimensional space to a one-dimensional or two-dimensional space. The main feature of SOM is that it creates a non-linear multi-dimensional projection of a data collector on a regular, low-dimensional (usually 2D) network. On the display, data space clustering as well as metric-topological relations of data elements are clearly visible. If the data elements are vectors, the components of which are variables with defined meanings, such as statistical data descriptors or measurements that describe the process, the SOM grid can be used as a basis on which each variable can be displayed separately using gray or pseudo-color coding. This type of projection has been found to be very useful for understanding the interrelationships between variables as well as data set structures.
Źródło:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka; 2018, 8, 1; 34-39
2082-9892
Pojawia się w:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Svenska generiska pronomen hos finska språkbadselever. En jämförelse mellan två årskurser
Swedish generic pronouns in Finnish-speaking students in Swedish immersion
Autorzy:
Nyqvist, Eeva-Liisa
Lindström Tiedemann, Therese
Powiązania:
https://bibliotekanauki.pl/articles/27314246.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
Svenska som L2
generiska pronomen
implicit och explicit inlärning
svårighet
språkbad
L2 Swedish
generic pronouns
implicit and explicit learning
difficulty
immersion
Opis:
This is a study of the use of generic pronouns in Swedish as a second language (L2) by L1 Finnish immersion students. We compare two groups, 12-year-olds, and 15-year-olds, to see if there is a difference and to identify which the most challenging cases are in both groups. Norm deviations are compared to see if they mainly consist of overuse of generic pronouns or more formal aspects, such as the pronoun which is chosen, and the understanding of the relation between the generic subject, object, possessive and reflexive pronouns. Both groups use generic pronouns in the subject position in a manner which mostly follows the standard, and mainly have problems with possessive pronouns in connection to generic pronouns. It is possible that object generic pronouns would also be problematic, but there are none in our data. Generic pronouns are sometimes left out as subjects, which is ungrammatical in Swedish. There is also occasional overuse of man where it is not idiomatic, and some mixed forms with man and s-passive. Results show possible transfer from the first language (L1) of the learners, but less in the older group. Furthermore, there also appears to be transfer from L3 English, which our informants are learning at school. This seems more present in the older group.
Źródło:
Folia Scandinavica Posnaniensia; 2023, 33; 14-28
1230-4786
2299-6885
Pojawia się w:
Folia Scandinavica Posnaniensia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft computing tools for virtual drug discovery
Autorzy:
Hagan, D.
Hagan, M.
Powiązania:
https://bibliotekanauki.pl/articles/91628.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
drug discovery
virtual screening
multilayer network
SOM
Opis:
In this paper, we describe how several soft computing tools can be used to assist in high throughput screening of potential drug candidates. Individual small molecules (ligands) are assessed for their potential to bind to specific proteins (receptors). Committees of multilayer networks are used to classify protein-ligand complexes as good binders or bad binders, based on selected chemical descriptors. The novel aspects of this paper include the use of statistical analyses on the weights of single layer networks to select the appropriate descriptors, the use of Monte Carlo cross-validation to provide confidence measures of network performance (and also to identify problems in the data), the addition of new chemical descriptors to improve network accuracy, and the use of Self Organizing Maps to analyze the performance of the trained network and identify anomalies. We demonstrate the procedures on a large practical data set, and use them to discover a promising characteristic of the data. We also perform virtual screenings with the trained networks on a number of benchmark sets and analyze the results.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 3; 173-189
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selekcja podobrazów dla potrzeb dopasowywania zdjęć lotniczych oparta na histogramach gradientu i sieci neuronowej
Selection of sub-images for aerial photographs matching purposes based on gradient distribution and neural networks
Autorzy:
Czechowicz, A.
Mikrut, Z.
Powiązania:
https://bibliotekanauki.pl/articles/131000.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
fotogrametria
wzajemne dopasowanie
algorytm Canny'ego
histogram gradientów
SOM
sieci Kohonena
sieci backpropagation
photogrammetry
mutual matching
Canny edge detector
gradient histogram
Kohonen networks
backpropagation networks
Opis:
Artykuł przedstawia wyniki wykorzystania sieci neuronowych do selekcji podobrazów oraz wyniki wyszukiwania wybranych obszarów na pozostałych zdjęciach z wykorzystaniem rozkładu odpowiedzi dla sieci SOM Kohonena. Zaproponowano reprezentacje fragmentu obrazu oparta na rozkładzie wartości modułu gradientu i jego kierunku. Badania przeprowadzono na dziewięciuset podobrazach zdjęć lotniczych okolic Krakowa o różnym pokryciu terenu podzielonych na trzy kategorie: obszarów korzystnych, pośrednich i niekorzystnych pod względem wyszukiwania cech do orientacji wzajemnej. Dla każdego z obrazów, w oparciu o algorytm Canny’ego, wyznaczono krawędzie. Na podstawie wartości gradientu i kierunków wykrytych krawędzi sporządzono histogram, który następnie posłużył wyznaczeniu reprezentacji podobrazu w postaci profilu kierunku. Tak przygotowana reprezentacje wykorzystano do uczenia sieci neuronowych metoda nadzorowana (backpropagation) oraz nienadzorowana (Kohonena), a następnie do klasyfikacji obszarów nauczonymi sieciami. W przypadku sieci backpropagation miara efektywności klasyfikacji był globalny współczynnik rozpoznania oraz macierz pomyłek. Dla sieci Kohonena wyznaczano współczynnik kompletności i poprawności. Wyniki zestawiono z rezultatami otrzymanymi na drodze uczenia metoda wstecznej propagacji błędów, gdzie generowane na mapie Kohonena odpowiedzi stanowiły sygnał wejściowy dla warstwy backpropagation. W dalszym etapie wytypowane obszary korzystne poszukiwano na sąsiednich obrazach. Wzmocniony funkcja preferująca wysokie wartości rozkład odpowiedzi na mapie cech siec Kohonena, uzyskany dla podobrazów korzystnych, porównywano z rozkładem dla podobrazów o tych samych wymiarach na sąsiednich zdjęciach. Za miarę podobieństwa obszarów przyjęto współczynnik korelacji dla porównywanych odpowiedzi sieci.
This paper describes the application of neural networks for selection of sub-images and the result of the search for the selected areas on the remaining photographs with the utilisation of Kohonen’s SOM network responses distribution. Image fragment representation based on the gradient magnitude values distribution and its direction was proposed. The research was conducted on nine hundred sub-images, taken from aerial photographs of the Cracow’s environs with different terrain cover, divided into three categories: advantageous, intermediate and disadvantageous areas in respect of searching for the features for mutual matching. The edges were detected with Canny algorithm. Based on the gradient values and the directions of the edges, the histogram was created and used to determine the representation of the sub-image in the direction’s profile form. The prepared representation served for teaching the neural network using supervised (backpropagation) and unsupervised (Kohonen) method and later for the classification. For the backpropagation network, the classification effectiveness was measured using the global recognition coefficient and the cooccurrence matrix. For the Kohonen network, the completeness and correctness coefficients were determined. Afterwards, the two networks were put together: the responses generated on the Kohonen map constituted the input signal for the backpropagation layer. In the next step, the adjacent images were sought for the chosen areas. Response distribution on the Kohonen network feature map, amplified with the function preferring the high values, was compared with the distribution for the same size sub-images of the adjacent photographs. To measure the similarity of the subimages, the correlation coefficient to compare network’s responses was used.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 149-158
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Segmentation Analysis For Polish Digital Startups in Years 2015 and 2016
Analiza segmentacyjna polskich startupów cyfrowych w latach 2015–2016
Autorzy:
Rostek, Katarzyna
Skala, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/2179638.pdf
Data publikacji:
2018-06-30
Wydawca:
Uniwersytet Warszawski. Wydawnictwo Naukowe Wydziału Zarządzania
Tematy:
startup
segmentation
clustering
SOM Kohonen
characteristics
digital
segmentacja
klasteryzacja
sieci Kohonena
charakterystyki
technologie cyfrowe
Opis:
The largest study of the digital industry in Poland has been run since 2015 by the Startup Poland Foundation in cooperation with the researchers from the Warsaw University of Technology. Such studies are not easy to carry out because of the heterogeneity of the definitions of basic concepts, including the definition of a startup. This article presents a comparison of examples of this type of study carried out worldwide and identifies the main differences between them. On the basis of the data obtained from the Foundation’s research, a segmentation and comparative analysis of Polish startups was carried out, the results of which are presented in this article. Six main differentiating features of the defined segments were identified, of which the production of hardware by startups and cooperation with academia were of particular interest.
Największe badanie startupów branży cyfrowej w Polsce od 2015 r. wykonuje fundacja Startup Poland we współpracy z naukowcami z Politechniki Warszawskiej. Badania takie nie są łatwe do zrealizowania ze względu na niejednorodność definicji podstawowych pojęć, w tym definicji startupu. W artykule przedstawiono zestawienie przykładowych badań tego typu, wykonywanych na świecie i wskazano główne różnice, jakie między nimi występują. Na podstawie danych otrzymanych w ramach badań fundacji, przeprowadzono analizę segmentacyjną i porównawczą polskich startupów, której wyniki zaprezentowano w artykule. Zidentyfikowano sześć głównych cech różnicujących poszczególne segmenty, wśród których na szczególną uwagę zasługuje fakt produkowania przez startupy hardware’u oraz prowadzenie współpracy z nauką.
Źródło:
Studia i Materiały; 2018, 1(26); 55-67
1733-9758
Pojawia się w:
Studia i Materiały
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozwój przedsiębiorczości technologicznej w Polsce. Studium porównawcze przedsiębiorstw KET oraz ICT
Development of technological entrepreneurship in Poland. comparative study of KET and ICT enterprises
Autorzy:
Rostek, Katarzyna
Skala, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/590330.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Analiza skupień Warda
Kluczowe technologie wspomagające
Przedsiębiorczość technologiczna
Przedsiębiorstwa wysokiej techniki
Segmentacja
SOM Kohonena
Cluster analysis Ward
High-tech ventures
Key enabling technologies
Segmentation
SOM Kohonen
Technology entrepreneurship
Opis:
Rozwój przedsiębiorczości technologicznej w Polsce wymaga inwestowania i efektywnego wspierania przedsiębiorstw, których działania koncentrują się w obszarze wysokich technologii (HT) oraz kluczowych technologii wspomagających (KET). Klasyfikacja podmiotów do jednej z tych grup jest poważnym wyzwaniem, które wymaga dopracowania zarówno definicji, jak i narzędzi wspomagających. Celem jest osiągnięcie takiej precyzji identyfikacji i typologizacji przedsiębiorstw, które zagwarantują właściwe ukierunkowanie celowych środków pomocy oraz stałe monitorowanie postępów ich rozwoju. W niniejszym opracowaniu zaprezentowano wyniki analizy przeprowadzonej dla trzech grup przedsiębiorstw – producentów oprogramowania w branży informatycznej (ICT), producentów wyrobów wysokiej techniki (HT) oraz twórców kluczowych technologii wspomagających (KET). Na tej podstawie wskazano cechy charakteryzujące przedsiębiorstwa o wysokim potencjale rozwoju oraz przygotowano rekomendacje dotyczące istotnych wyróżników tego potencjału, które stanowią elementy oceny innych podmiotów, starających się o pomoc i dofinansowanie swojej działalności.
The development of technological entrepreneurship in Poland requires investment and effective support of companies whose activities are concentrated in the area of high technology (HT) and key enabling technologies (KETs). The classification of entities into one of these groups is a major challenge that should be developed in both areas of definition and supporting tools. The aim is to achieve such precision in identification and typology of companies that ensure proper targeting of support activities and constant monitoring of the development progress. This paper presents the results of analysis performed for the three groups of companies – manufacturers of Information Technology (ICT), HT and KETs. On the basis of specified characteristics of companies with high growth potential it has been prepared recommendations for main criteria of this potential, which are elements of the evaluation of other entities are seeking help and financial support of its functioning.
Źródło:
Studia Ekonomiczne; 2016, 281; 155-167
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Regional differentiation of households in the context of a subjective assessment of the level of income
Regionalne zróżnicowanie gospodarstw domowych w kontekście subiektywnej oceny poziomu dochodów
Autorzy:
Grzywińska-Rąpca, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/548563.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Rzeszowski. Wydawnictwo Uniwersytetu Rzeszowskiego
Tematy:
household
subjective assessment
material situation
SOM
Kohonen
gospodarstwo domowe
subiektywna ocena
sytuacja materialna
Opis:
One of the factors affecting the stratification and diversity of living conditions of the population is the level of income of the population. Income levels indicate inequalities that are inevitable and even necessary to some extent. They are part of the incentive mechanisms in consumer behaviour. The aim of the article was to show, by grouping voivodships, the differences in the assessment of the subjective level of household income. Households participating in the Household Budget Survey conducted by the Polish Central Statistical Office reported the amount of income (in PLN) allowing (in their assessment) to recognize the given income as: very weak, insufficient, barely sufficient, good and very good. The specified values of the centroids made it possible to organize voivodships in Poland due to the level of analysed features and identification of groups in which there are households with similar expectations and a subjective assessment of the economic situation. Based on the analysis, it can be concluded that in terms of subjective assessments of the level of income obtained by households there are stratifications in the individual groups of voivodships. The analysis of the diversity of income level assessments was conducted in a spatial section (diversification of the phenomenon by voivodships). The SOM-Kohonen method was used for the analysis.
Jednym z czynników wpływających na rozwarstwienie i różnorodność warunków życia społeczeństwa jest poziom dochodu ludności. Poziom dochodu wskazuje na nierówności, które są nieuniknione, a nawet w pewnym stopniu niezbędne. Są elementem mechanizmów motywacyjnych w zachowaniach konsumentów. Celem artykułu jest wykazanie, za pomocą grupowania województw, zróżnicowania w ocenie subiektywnego poziomu dochodów gospodarstw domowych. Gospodarstwa uczestniczące w Badaniu budżetów gospodarstw domowych przeprowadzonym przez Główny Urząd Statystyczny podawały wysokość dochodów (w złotych) pozwalających (w ich ocenie) uznać dane dochody, jako: bardzo słabe, niewystarczające, ledwo wystarczające, dobre i bardzo dobre. Określone wartości centroidów umożliwiły uporządkowanie województw w Polsce ze względu na poziom analizowanych cech oraz identyfikację grup, w których są gospodarstwa domowe o podobnych oczekiwaniach i subiektywnej ocenie sytuacji gospodarczej. Na podstawie analizy można stwierdzić, że pod względem subiektywnych ocen poziomu dochodów uzyskiwanych przez gospodarstwa domowe istnieją stratyfikacje w poszczególnych grupach województw. Analiza różnorodności ocen poziomu dochodów została przeprowadzona w przekroju przestrzennym (zróżnicowanie zjawiska według województw). Do analizy zastosowano metodę SOM-Kohonen.
Źródło:
Nierówności Społeczne a Wzrost Gospodarczy; 2019, 60; 227-241
1898-5084
2658-0780
Pojawia się w:
Nierówności Społeczne a Wzrost Gospodarczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pulse shape discrimination of neutrons and gamma rays using kohonen artificial neural networks
Autorzy:
Tambouratzis, T.
Chernikova, D.
Pzsit, I.
Powiązania:
https://bibliotekanauki.pl/articles/91759.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
shape
neutron
discrimination
gamma rays
Kohonen artificial neural networks
ANNs
linear vector quantisation
LVQ
self-organizing map
SOM
pulse shape discrimination
PSD
Opis:
The potential of two Kohonen artificial neural networks (ANNs) - linear vector quantisation (LVQ) and the self organising map (SOM) - is explored for pulse shape discrimination (PSD), i.e. for distinguishing between neutrons (n’s) and gamma rays (’s). The effect that (a) the energy level, and (b) the relative size of the training and test sets, have on identification accuracy is also evaluated on the given PSD dataset. The two Kohonen ANNs demonstrate complementary discrimination ability on the training and test sets: while the LVQ is consistently more accurate on classifying the training set, the SOM exhibits higher n/ identification rates when classifying new patterns regardless of the proportion of training and test set patterns at the different energy levels; the average time for decision making equals ˜100 μs in the case of the LVQ and ˜450 μs in the case of the SOM.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2013, 3, 2; 77-88
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
One- and multivariable characteristics of spring barley (Hordeum vulgare L.) cultivars breed at the Nagradowice Plant Breeding Station of the Poznańska Hodowla Roślin, studied in experiments in 2017-2018
Autorzy:
Mańkowski, Dariusz
Jasińska, Dorota
Anioła, Magdalena
Śmiałowski, Tadeusz
Janaszek-Mańkowska, Monika
Dynkowska, Wioletta M.
Powiązania:
https://bibliotekanauki.pl/articles/2197949.pdf
Data publikacji:
2021-11-18
Wydawca:
Instytut Hodowli i Aklimatyzacji Roślin
Tematy:
spring barley
breeding experiments
yielding
BWLUE
SOM
Opis:
The aim of this study was to evaluate the yield variability of spring barley families grown at the Nagradowice Plant Breeding Station of Poznan Plant Breeding against other families studied in years 2017‒2018 in Team Breeding Experiments. Research material included 250 spring barley families cultivated in 2017 and 2018 in 6 locations. Selection of spring barley families for preliminary experiments was based on synthesis of results obtained in inter-plant experiments established in 2016 and 2017 in 5 locations. Combined (due to location) analysis of variance for experimental data was performed for each year and each series of experiments separately. Best Weighted Linear Unbiased Estimators (BWLUE) for the effects of individual sources of variation were included in ANOVA model. Significant effect of location on mean yield was observed in each research year and each series of experiments. Crucial differences were also observed between tested varieties and breeding lines. Moreover, significant interaction between locations and varieties or breeding families was also observed. Self-organising map (SOM) was applied to develop multivariable characteristic of tested families and cultivars of spring barley. Analyses results, i.e. ranking of BWLUE effects as well as SOM segmentation revealed seven breading lines from Breeding Station Nagradowice, which may be considered for further breeding process.
Źródło:
Plant Breeding and Seed Science; 2021, 82; 3-18
1429-3862
2083-599X
Pojawia się w:
Plant Breeding and Seed Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Noisy image segmentation using a self-organizing map network
Autorzy:
Gorjizadeh, S
Pasban, S
Alipour, S
Powiązania:
https://bibliotekanauki.pl/articles/102708.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
image segmentation
unsupervised algorithm
noise
statistical features
SOM neural networks
Opis:
Image segmentation is an essential step in image processing. Many image segmentation methods are available but most of these methods are not suitable for noisy images or they require priori knowledge, such as knowledge on the type of noise. In order to overcome these obstacles, a new image segmentation algorithm is proposed by using a self-organizing map (SOM) with some changes in its structure and training data. In this paper, we choose a pixel with its spatial neighbors and two statistical features, mean and median, computed based on a block of pixels as training data for each pixel. This approach helps SOM network recognize a model of noise, and consequently, segment noisy image as well by using spatial information and two statistical features. Moreover, a two cycle thresholding process is used at the end of learning phase to combine or remove extra segments. This way helps the proposed network to recognize the correct number of clusters/segments automatically. A performance evaluation of the proposed algorithm is carried out on different kinds of image, including medical data imagery and natural scene. The experimental results show that the proposed algoise in comparison with the well-known unsupervised algothms.
Źródło:
Advances in Science and Technology. Research Journal; 2015, 9, 26; 118--123
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Music Mood Visualization Using Self-Organizing Maps
Autorzy:
Plewa, M.
Kostek, B.
Powiązania:
https://bibliotekanauki.pl/articles/176410.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
music mood
music parameterization
MER (Music Emotion Recognition)
MIR (Music Information Retrieval)
Multidimensional Scaling (MDS)
principal component analysis (PCA)
Self-Organizing Maps (SOM)
ANN (Artificial Neural Networks)
Opis:
Due to an increasing amount of music being made available in digital form in the Internet, an automatic organization of music is sought. The paper presents an approach to graphical representation of mood of songs based on Self-Organizing Maps. Parameters describing mood of music are proposed and calculated and then analyzed employing correlation with mood dimensions based on the Multidimensional Scaling. A map is created in which music excerpts with similar mood are organized next to each other on the two-dimensional display.
Źródło:
Archives of Acoustics; 2015, 40, 4; 513-525
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies