Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Rothe's fixed point theorem" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
On the constrained and unconstrained controllability of semilinear Hilfer fractional systems
Autorzy:
Sikora, Beata
Powiązania:
https://bibliotekanauki.pl/articles/27312002.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
Hilfer fractional derivative
fractional systems
semilinear control systems
nonautonomous systems
Rothe's fixed point theorem
generalized Darbo fixed point theorem
Opis:
In the paper finite-dimensional semilinear dynamical control systems described by fractional-order state equations with the Hilfer fractional derivative are discussed. The formula for a solution of the considered systems is presented and derived using the Laplace transform. Bounded nonlinear function f depending on a state and controls is used. New sufficient conditions for controllability without constraints are formulated and proved using Rothe’s fixed point theorem and the generalized Darbo fixed point theorem. Moreover, the stability property is used to formulate constrained controllability criteria. An illustrative example is presented to give the reader an idea of the theoretical results obtained. A transient process in an electrical circuit described by a system of Hilfer type fractional differential equations is proposed as a possible application of the study.
Źródło:
Archives of Control Sciences; 2023, 33, 1; 155--178
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Controllability of time varying semilinear non-instantaneous impulsive systems with delay, and nonlocal conditions
Autorzy:
Cabada, Dalia
Garcia, Katherine
Guevara, Cristi
Leiva, Hugo
Powiązania:
https://bibliotekanauki.pl/articles/2134894.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
exact controllability
semilinear time varying control systems
non-instantaneous impulses
delay
nonlocal conditions
Rothe's fixed point theorem
Opis:
In this paper we prove the exact controllability of a time varying semilinear system considering non-instantaneous impulses, delay, and nonlocal conditions occurring simultaneously. It is done by using the Rothe’s fixed point theorem together with some sub-linear conditions on the nonlinear term, the impulsive functions, and the function describing the nonlocal conditions. Furthermore, a control steering the semilinear system from an initial state to a final state is exhibited.
Źródło:
Archives of Control Sciences; 2022, 32, 2; 335--357
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Approximate controllability of the impulsive semilinear heat equation
Autorzy:
Leiva, H.
Merentes, N.
Powiązania:
https://bibliotekanauki.pl/articles/357798.pdf
Data publikacji:
2015
Wydawca:
Politechnika Rzeszowska im. Ignacego Łukasiewicza. Oficyna Wydawnicza
Tematy:
impulsive semilinear heat equation
approximate controllability
Rothe's fixed point theorem
functional analysis
teoria punktu stałego
przestrzeń Banacha
równanie przewodnictwa ciepła
sterowalność
analiza funkcjonalna
Opis:
In this paper we apply Rothe's Fixed Point Theorem to prove the interior approximate controllability of the following semilinear impulsive Heat Equation \[ \begin{cases} z_{t} = \Delta z + 1_{\omega}u(t,x) + f(t,z,u(t,x)), & \text{in} \quad (0,\tau] \times \Omega, t \neq t_{k}) \\ z = 0, & \text{on} \quad (0, \tau) \times \delta\Omega,\\ z(0,x) = z_{0}(x), & x \in \Omega, \\ z(t_{k}^{+}, x) = z(t_{k}^{-}, x) + I_{k}(t_{k},z(t_{k},x)u(t_{k},x)), & x \in \Omega, \end{cases} \] where k = 1, 2, . . . , p, $\Omega$ is a bounded domain in $\mathbb{R}^{N}(N \geq 1), z_{0} \in L_{2}(\Omega), \omega$ is an open nonempty subset of $\Omega$, $1_{\omega}$ denotes the characteristic function of the set $\omega$, the distributed control $u$ belongs to $C\left([0, \tau]; L_{2}\left(\Omega\right)\right)$ and $f,I_{k} \in C([0, \tau] \times \mathbb{R} \times \mathbb{R}; \mathbb{R}), k = 1, 2, 3, \ldots, p$, such that \[ |f(t,z,u)| \leq a_{0}|z|^{\alpha_{0}} + b_{0}|u|^{\beta_{0}} +c_{0}, \quad u \in \mathbb{R}, z \in \mathbb{R}. \] \[ |I_{k}(t,z,u)| \leq a_{k}|z|^{\alpha_{k}} + b_{k}|u|^{\beta_{k}} +c_{k}, k=1,2,3 \ldots, pu \in \mathbb{R}, z \in \mathbb{R} \] with $\frac{1}{2} \leq \alpha_{k} < 1, \frac{1}{2} \leq \beta_{k} < 1, k= 0,1,2,3, \ldots, p$ Under this condition we prove the following statement: For all open nonempty subsets $\omega$ of $\Omega$ the system is approximately controllable on $[0, \tau]$. Moreover, we could exhibit a sequence of controls steering the nonlinear system from an initial state $z_{0}$ to an $\epsilon$ neighborhood of the nal state $z_{1}$ at time $\tau > 0$.
Źródło:
Journal of Mathematics and Applications; 2015, 38; 85-104
1733-6775
2300-9926
Pojawia się w:
Journal of Mathematics and Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies