Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Robust Counterpart" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Adjustable Robust Counterpart Optimization Model for Maximum Flow Problems with Box Uncertainty
Autorzy:
Agustini, Rahmah Arie
Chaerani, Diah
Hertini, Elis
Powiązania:
https://bibliotekanauki.pl/articles/1031851.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Adjustable Robust Counterpart
Linear Programming
Maximum flow problem
Robust Optimization
Opis:
The maximum flow problem is an optimization problem that aims to find the maximum flow value on a network. This problem can be solved by using Linear Programming. The obstacle that is often faced in determining the maximum flow is the magnitude of the capacity of each side of the network can often be changed due to certain factors. Therefore, we need one of the optimization fields that can calculate the uncertainty factor. The field of optimization carried out to overcome these uncertainties is Robust Optimization. This paper discusses the Optimization model for the maximum flow problem by calculating the uncertainties on parameters and adjustable variables using the Adjustable Robust Counterpart (ARC) Optimization model. In this ARC Optimization model it is assumed that there are indeterminate parameters in the form of side capacity in a network and an uncertain decision variable that is the amount of flow from the destination point (sink) to the source point (source). Calculation results from numerical simulations show that the ARC Optimization model provides the maximum number of flows in a network with a set of box uncertainty. Numerical simulations were obtained with Maple software.
Źródło:
World Scientific News; 2020, 141; 91-102
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust Optimization Model for Location Transportation Problems with Ellipsoidal Uncertainty Set
Autorzy:
Pribadi, Diantiny Mariam
Chaerani, Diah
Dewanto, Stanley P.
Supian, Sudradjat
Subiyanto, Subiyanto
Powiązania:
https://bibliotekanauki.pl/articles/1062875.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Ellipsoidal uncertainty set
Location transportation problem
Mixed integer linear problem
Robust Counterpart
Robust Optimization
Uncertainty demand
Opis:
The location transportation problem is a combination of location, routing and inventory facilities. The problem of transportation locations consists of strategic decisions and operational decisions. Strategy decisions consist of location and facility capacity to meet demand, while operational decisions consist of final production and optimal distribution. However, sometimes there is uncertainty in demand, which influences operational decisions. Robust Optimization is a method for solving problems that are affected by uncertainty in data. This study aims to apply single-stage with an ellipsoid approach to the problem of transportation locations with uncertainty in demand. Robust optimization through the ellipsoidal uncertainty set approach provides costs for strategic and operational decisions that tend to remain for each production period. As for the optimization model, the influence of uncertainty in demand can affect the uncertainty of strategic and operational costs.
Źródło:
World Scientific News; 2019, 127, 3; 296-310
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies