Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Riesz space" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Copies of \(\mathbb R^{\mathbb N}\) in F-lattices
Autorzy:
Wnuk, Witold
Powiązania:
https://bibliotekanauki.pl/articles/744986.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
metrizable locally solid Riesz space
F-lattice
sequence spaces
Opis:
Modifying ideas presented in [14] we prove that a complete metrizable locally solid Riesz space \(E\) contains a linear subspace linearly homeomorphic to \(\mathbb R^{\mathbb N}\) iff \(E\) contains a sublattice order isomorphic to \(\mathbb R^{\mathbb N}\).
Źródło:
Commentationes Mathematicae; 2016, 56, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
esz Triple Probabilisitic of Almost Lacunary Cesàro C111 Statistical Convergence of Γ3 Defined by Musielak Orlicz Function
Autorzy:
Subramanian, N.
Esi, A.
Aiyub, M.
Powiązania:
https://bibliotekanauki.pl/articles/1177988.pdf
Data publikacji:
2018
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Analytic sequence
Orlicz function
Riesz space
entire sequence
statistical convergence
triple sequences
Opis:
In this paper we study the concept of almost lacunary statistical Cesa'ro of Γ3 over probabilistic p- metric spaces defined by Musielak Orlicz function. Since the study of convergence in PP-spaces is fundamental to probabilistic functional analysis, we feel that the concept of almost lacunary statistical Cesàro of Γ3 over probabilistic p- metric spaces defined by Musielak-Orlicz function in a PP-space would provide a more general framework for the subject.
Źródło:
World Scientific News; 2018, 96; 96-107
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Riesz triple probabilisitic of almost lacunary Cesáro C111 statistical convergence of Γ3 defined by a Musielak Orlicz function
Autorzy:
Esi, Ayhan
Subramanian, Nagarajan
Ozdemir, M. Kemal
Powiązania:
https://bibliotekanauki.pl/articles/1076148.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Cesáro C111 - statistical convergence
Orlicz function
Riesz space
analytic sequence
entire sequence
statistical convergence
triple sequences
Opis:
In this paper we study the concept of almost lacunary statistical Cesáro of Γ3 over probabilistic p- metric spaces defined by Musielak Orlicz function. Since the study of convergence in PP-spaces is fundamental to probabilistic functional analysis, we feel that the concept of almost lacunary statistical Cesáro of Γ3 over probabilistic p- metric spaces defined by Musielak in a PP-space would provide a more general framework for the subject.
Źródło:
World Scientific News; 2019, 116; 115-127
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vector series whose lacunary subseries converge
Autorzy:
Drewnowski, Lech
Labuda, Iwo
Powiązania:
https://bibliotekanauki.pl/articles/1206244.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
subseries convergence
lacunary subseries
zero-density subseries
lacunary convergence property
topological Riesz space of measurable functions
topological vector space of Bochner measurable functions
Lebesgue property
Levi property
copy of $c_0$
Opis:
The area of research of this paper goes back to a 1930 result of H. Auerbach showing that a scalar series is (absolutely) convergent if all its zero-density subseries converge. A series $∑_n x_n$ in a topological vector space X is called ℒ-convergent if each of its lacunary subseries $∑_k x_{n_k}$ (i.e. those with $n_{k+1} - n_k → ∞$) converges. The space X is said to have the Lacunary Convergence Property, or LCP, if every ℒ-convergent series in X is convergent; in fact, it is then subseries convergent. The Zero-Density Convergence Property, or ZCP, is defined similarly though of lesser importance here. It is shown that for every ℒ-convergent series the set of all its finite sums is metrically bounded; however, it need not be topologically bounded. Next, a space with the LCP contains no copy of the space $c_0$. The converse holds for Banach spaces and, more generally, sequentially complete locally pseudoconvex spaces. However, an F-lattice of measurable functions is constructed that has both the Lebesgue and Levi properties, and thus contains no copy of $c_0$, and, nonetheless, lacks the LCP. The main (and most difficult) result of the paper is that if a Banach space E contains no copy of $c_0$ and λ is a finite measure, then the Bochner space $L_0$ (λ,e) has the LCP. From this, with the help of some Orlicz-Pettis type theorems proved earlier by the authors, the LCP is deduced for a vast class of spaces of (scalar and vector) measurable functions that have the Lebesgue type property and are "metrically-boundedly sequentially closed" in the containing $L_0$ space. Analogous results about the convergence of ℒ-convergent positive series in topological Riesz spaces are also obtained. Finally, while the LCP implies the ZCP trivially, an example is given that the converse is false, in general.
Źródło:
Studia Mathematica; 2000, 138, 1; 53-80
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Representation Theorem for \(\varphi\)-Bounded Variation of Functions in the Sense of Riesz
Autorzy:
Aziz, Wadie
Leiva, Hugo
Merentes, Nelson
Rzepka, Beata
Powiązania:
https://bibliotekanauki.pl/articles/746275.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Bounded variation
function of bounded variation in the sense of Riesz
variations spaces
Banach space
algebra space
Opis:
In this paper we extend the well known Riesz lemma to the class of bounded \(\varphi\)-variation functions in the sense of Riesz defined on a rectangle \(I_a^b\subset \mathbb{R}^2\). This concept was introduced in [2], where the authors proved that the space \(BV_\varphi^R (I_a^b;\mathbb{R}\) of such functions is a Banach Algebra. Moreover, they characterized also the Nemytskii operator acting in this space. Thus our result creates a continuation of the paper [2].
Źródło:
Commentationes Mathematicae; 2010, 50, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sturm-Liouville Systems Are Riesz-Spectral Systems
Autorzy:
Delattre, C.
Dochain, D.
Winkin, J.
Powiązania:
https://bibliotekanauki.pl/articles/908100.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
matematyka
Sturm-Liouville system
Riesz-spectral system
infinite-dimensional state-space system
Co-semigroup
Opis:
The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown that the negative of a Sturm-Liouville operator is a Riesz-spectral operator on L2(a,b) and the infinitesimal generator of a C0-semigroup of bounded linear operators.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2003, 13, 4; 481-484
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The basis property of eigenfunctions in the problem of a nonhomogeneous damped string
Autorzy:
Rzepnicki, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/254937.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
nonhomogeneous damped string
Hilbert space
Riesz basis
modulus of continuity
basis with parentheses
string equation
Opis:
The equation which describes the small vibrations of a nonhomogeneous damped string can be rewritten as an abstract Cauchy problem for the densely defined closed operator iA. We prove that the set of root vectors of the operator A forms a basis of subspaces in a certain Hilbert space H. Furthermore, we give the rate of convergence for the decomposition with respect to this basis. In the second main result we show that with additional assumptions the set of root vectors of the operator A is a Riesz basis for H.
Źródło:
Opuscula Mathematica; 2017, 37, 1; 141-165
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies