Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Portfolio theory and financial economics" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Risk-minimizing hedging of contingent claims in incomplete models of financial markets
Autorzy:
Rutkowski, Marek
Powiązania:
https://bibliotekanauki.pl/articles/748050.pdf
Data publikacji:
1996
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Portfolio theory and financial economics
Opis:
.
The paper is devoted to a specific optimization problem associated with the hedging of contingent claims in continuous-time incomplete models of financial markets. Generally speaking, we place ourselves within the standard framework of the theory of continuous trading, as exposed in Harrison and Pliska [13]. Our aim is twofold. Firstly, we present a relatively concise exposition of the risk-minimizing methodology (due essentially to Follmer and Sondermann [12], Follmer and Schweizer [11] and Schweizer [33]) in a multi-dimensional continuous-time framework. Let us mention here that this approach is based on the specific kind of minimization of the additional cost associated with a hedging strategy at all times before the terminal date T. Secondly, we provide some new results which formalize some concepts introduced in Hofman et a/.[l5], in particular, the general results of the first, part are specialized to the case of multi-dimensional Ito processes. Finally, in Section 6 the general theory is illustrated by means of an example dealing with the risk-minimizing hedging of a stock index option in an incomplete framework. This example is motivated bv the work of Lamberton and Lapeyre [22] who have! solved a related, but simpler, problem of a risk-minimizing hedging under the martingale measure.
Źródło:
Mathematica Applicanda; 1996, 25, 39
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On some difference-delay equations arising in a problem of capital deposits
Autorzy:
Kwapisz, Marian
Bartoszewski, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/748048.pdf
Data publikacji:
1996
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Portfolio theory and financial economics
Difference equations, additive
Opis:
.
Introduction. We consider a real life problem: a. person has made a deposit of D0 dollars in bank B, which calculates interest on this deposit at in=100•in% after each n+l-st quarter and the interest is compounded at the end of each consecutive year since the deposit date, which means that the interest is capitalised yearly. In the case discussed the basic time unit is a quarter but the conversion period - the time interval at the end of which the interest is compounded - is four quarters (for the terminology see [3]). We ask the following question: what is the balance of the person after n time units, i.e. after n quarters? Such a question is important to people planning various sorts of investments or making arrangements with life insurance institutions. We cannot find an answer to this question in available literature. In particular, it is not to be found in recent books devoted to the subject [see 1-6]. We want to find general formulas that would allow us to express this balance by the other given quantities. Such formulas allow us to solve inverse problems consisting in finding the initial deposit Z)q , the interest rate i or the length of the period after which a capital reaches a given level. In this paper we give explicit formulas for the above-mentioned balance. They can be applied to the problems with any number of payments. At the end of this paper we give some examples of application of these formulas to solving the mentioned inverse problems. The obtained formulas make solving such problems easy. A straightforward application of backward recurrence formulas derived from formula (2), although possible, is quite troublesome.ct
Źródło:
Mathematica Applicanda; 1996, 25, 39
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies