- Tytuł:
-
A new metaheuristic algorithm for long-term open-pit production planning
Nowy meta-heurystyczny algorytm wspomagający długoterminowe planowanie produkcji w kopalni odkrywkowej - Autorzy:
-
Sattarvand, J.
Niemann-Delius, C. - Powiązania:
- https://bibliotekanauki.pl/articles/219597.pdf
- Data publikacji:
- 2013
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
optymalizacja kopalń odkrywkowych
planowanie produkcji
optymalizacja metodą kolonii mrówek
metaheurystyka
open pit optimization
production planning
ant colony optimization
metaheuristics - Opis:
-
Paper describes a new metaheuristic algorithm which has been developed based on the Ant Colony Optimisation (ACO) and its efficiency have been discussed. To apply the ACO process on mine planning problem, a series of variables are considered for each block as the pheromone trails that represent the desirability of the block for being the deepest point of the mine in that column for the given mining period. During implementation several mine schedules are constructed in each iteration. Then the pheromone values of all blocks are reduced to a certain percentage and additionally the pheromone value of those blocks that are used in defining the constructed schedules are increased according to the quality of the generated solutions. By repeated iterations, the pheromone values of those blocks that define the shape of the optimum solution are increased whereas those of the others have been significantly evaporated.
W artykule zaprezentowano nowy meta-heurystyczny algorytm oparty na zasadach optymalizacji mrowiska i zbadano jego skuteczność w zastosowaniach do planowania wydobycia w kopalniach. Uwzględniono szereg zmiennych w każdym bloku schematu i przeanalizowano „ślady feromonów” które przedstawiają „dążność” poszczególnych bloków w danej kolumnie do stania się najgłębszym punktem kopalni w trakcie określonego okresu prowadzenia prac wydobywczych. W ramach kolejnych iteracji generuje się kilka harmonogramów prowadzenia wydobycia. Następnie wartości poziomu feromonów przypisane do kolejnych bloków redukowane są do wielkości wyrażonych w procentach a wartości poziomu feromonów przypisane do bloków wykorzystywanych do wygenerowania danego harmonogramu zostają powiększone, zgodnie z wymogami odnośnie jakości uzyskanych rozwiązań. Drogą kolejnych iteracji, wartości poziomu feromonów przypisane do bloków generujących rozwiązania optymalne zostają powiększane podczas gdy wartości przypisane do bloków pozostałych zostają odpowiednio pomniejszone. - Źródło:
-
Archives of Mining Sciences; 2013, 58, 1; 107-118
0860-7001 - Pojawia się w:
- Archives of Mining Sciences
- Dostawca treści:
- Biblioteka Nauki