Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Perceptron Artificial Neural Networks" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Neural model of the vehicle control system in a racing game. Part 2, Research experiments
Autorzy:
Bolesta, Arkadiusz
Tchórzewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/2175161.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
Godot Engine
MATLAB
Simulink environment
Neural control system
Perceptron Artificial Neural Networks
video games
Opis:
This article, which is a continuation of the article under the same main title and subtitle: part 1 Design and its implementation, includes the obtained results of research experiments with the use of a designed and implemented racing game. It uses a neural model of the vehicle motion control system on the racetrack in the form of a Perceptron Artificial Neural Network (ANN). In designing the movement of vehicles on the racetrack, the following were used, inter alia, Godot Engine and MATLAB and Simulink programming environment. The numerical data (14 input quantities and two output quantities) for ANN training were prepared with the use of semi-automatic measurement of the race track control points. This article shows, among others, the results of 10 selected research experiments, testing and simulation, confirming the correct functioning of both the computer game and the model of the neural control system. As a result of simulation tests, it turned out that the longest lap of the track in the conducted experiments lasted 4 minutes and 55 seconds, and the shortest - 10.47 seconds. In five minutes, the highest number of laps was 34, while the lowest numbers of laps were 1 and 5. In the course of the experiments it was noticed that under the same conditions the ANN learning outcomes are sometimes different.
Źródło:
Studia Informatica : systems and information technology; 2022, 1(26); 45--60
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Investigation of the Applicability of Data-Driven Techniques in Hydrological Modeling: The Case of Seyhan Basin
Autorzy:
Turhan, Evren
Keleş, Mümine Kaya
Tantekin, Atakan
Keleş, Abdullah Emre
Powiązania:
https://bibliotekanauki.pl/articles/1811777.pdf
Data publikacji:
2019
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
artificial neural networks
drought analysis
data mining
Multilayer Perceptron
Seyhan Basin
Opis:
Proper water resources planning and management is based on reliable hydrological data. Missing rainfall and runoff observation data, in particular, can cause serious risks in the planning of hydraulics structures. Hydrological modeling process is quitely complex. Therefore, using alternative estimation techniques to forecast missing data is reasonable. In this study, two data-driven techniques such as Artificial Neural Networks (ANN) and Data Mining were investigated in terms of availability in hydrology works. Feed Forward Back Propagation (FFBPNN) and Generalized Regression Neural Networks (GRNN) methods were performed on rainfall-runoff modeling for ANN. Besides, Hydrological drought analysis were examined using data mining technique. The Seyhan Basin was preferred to carry out these techniques. It is thought that the application of different techniques in the same basin could make a great contribute to the present work. Consequently, it is seen that FFBPNN is the best model for ANN in terms of giving the highest R2 and lowest MSE values. Multilayer Perceptron (MLP) algorithm was used to predict the drought type according to limit values. This system has been applied to show the relationship between hydrological data and measure the prediction accuracy of the drought analysis. According to the obtained data mining results, MLP algorithm gives the best accuracy results as flow observation stations using SRI-3 month data.
Źródło:
Rocznik Ochrona Środowiska; 2019, Tom 21, cz. 1; 29-51
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using artificial neural networks to determine the location of wind farms. Miedzna district case study
Wykorzystanie sztucznych sieci neuronowych do wyznaczania lokalizacji elektrowni wiatrowych na przykładzie gminy Miedzna
Autorzy:
Pokonieczny, K.
Powiązania:
https://bibliotekanauki.pl/articles/292489.pdf
Data publikacji:
2016
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
artificial neural networks
multilayer perceptron
wind farms localization
elektrownie wiatrowe
perceptron wielowarstwowy
sztuczne sieci neuronowe
Opis:
The article concerns issues pertaining to of selecting suitable areas for wind farms. The basic assumption of the study was to take into account both criteria related to the profitability of this type of power plant, as well as public interest, which means the harmonious and not burdensome functioning of these installations for local communities. The problem of wind farm localization may be solved by the application of artificial neural networks (ANN), which are a computational intelligence element. In the conducted analysis, the possibility of wind farm localization was considered for the primary grid field with dimensions of 100 by 100 m. To prepare the training set, topographic vector data from the VMap L2 and SRTM (Shuttle Radar Topography Mission) digital terrain model were used. For each 100-meter x 100-meter grid, the input data was prepared, consisting of the factors which are important from the point of view of wind farm localization (forests, rivers, built-up areas etc.). Studies show that a properly trained neural network (using a representative number of samples and for the appropriate architecture), allows to process automation area classification in terms of placement on the wind turbines.
Zgodnie z obowiązującymi w Polsce regulacjami prawnymi użytkowanie elektrowni wiatrowych podlega odpowiednim uwarunkowaniom. Obostrzenia te dotyczą zarówno parametrów technicznych tych urządzeń, które związane są z bezpieczeństwem ich eksploatacji, jak i uwarunkowaniami przestrzennymi, związanymi z lokalizacją tych elektrowni oraz ich odległości od takich elementów pokrycia terenu, jak zabudowa czy lasy. Problematyka ta jest szczególnie istotna w kontekście częstych protestów mieszkańców, w sąsiedztwie których takie elektrownie mają być budowane. W celu wyznaczenia obszarów optymalnych dla lokalizacji elektrowni wiatrowych wykorzystano jedną z metod uczenia maszynowego, którą są sztuczne sieci neuronowe. Ich istotą, a jednocześnie przewagą nad metodami bazującymi na zadanym algorytmie, jest zdolność do uogólnienia otrzymywanych wyników, gdy algorytm rozwiązania danego problemu nie jest prosty (jak w przypadku wyznaczania obszarów szczególnie predestynowanych do lokalizacji elektrowni wiatrowych). W artykule przedstawiono metodykę zastosowania jednego rodzaju sieci neuronowych, którym jest perceptron wielowarstwowy. W zastosowanej sieci wykorzystano metodę nauczania nadzorowanego z nauczycielem, polegającą na wskazywaniu sieci neuronowej wzorcowego rozwiązania z określonymi danymi wejściowymi, którymi są parametry związane z pokryciem terenu i sąsiedztwem przestrzennym pola podstawowego, tj. kwadratu o wymiarach 100 × 100 m. Jako studium przypadku wybrana została gmina Miedzna, która znajduje się we wschodniej części województwa mazowieckiego i jest gminą wiejską o charakterze rolniczym. Obszar gminy leży na falistej wysoczyźnie morenowej, urozmaiconej morfologicznie. Otwarte pola uprawne oraz lekko pofałdowany teren to dwa główne czynniki sprzyjające możliwości rozmieszczenia farm wiatrowych na danym terenie. W zaprezentowanych w artykule przykładach wykorzystane zostały dane przestrzenne pochodzące z Vector Map Level 2 oraz dane wysokościowe Shuttle Radar Topography Mission (SRTM). W wyniku przeprowadzonych eksperymentów dowiedziono, że poprawnie nauczona sieć neuronowa (z wykorzystaniem reprezentatywnej liczby próbek i odpowiednią architekturą), umożliwia poprawne wyznaczenie obszarów predestynowanych do lokalizacji elektrowni wiatrowych nie tylko na terenie gminy Miedzna, ale również innych gmin, automatyzując proces wykonywania analiz tego typu.
Źródło:
Journal of Water and Land Development; 2016, 30; 101-111
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application perspective of digitalneural networks in the context of marine technologies
Autorzy:
Konon, V.
Konon, N.
Powiązania:
https://bibliotekanauki.pl/articles/24201415.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
marine technology
multi-layer perceptron
neural networks
digital neural networks
maritime industry
MLP algorithm
3D model
Artificial Neural Network
Opis:
This study is focused on the issue of digital neural networks’ implementation in the context of maritime industry. Various algorithms of such networks in the terms of the marine technologies have been reviewed in the current study in order to evaluate the effectiveness of the methodology and to propose a new concept of an artificial neural network’s application in this way. Fire-detection system simulation based on the thermal imagers’ data input had been developed to assess the efficiency of the concept suggested with a multi-layer perceptron (MLP) algorithm integrated into the designed 3d-model.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2022, 16, 4; 743--747
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sztucznych sieci neuronowych do klasyfikacji struktur odmienionych węgla kamiennego w strefach przyuskokowych
The application of artificial neural networks for the classification of altered structures of hard coal in near-fault zones
Autorzy:
Młynarczuk, M.
Godyń, K.
Skiba, M.
Powiązania:
https://bibliotekanauki.pl/articles/166211.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Górnictwa
Tematy:
struktura węgla
uskoki
sztuczne sieci neuronowe
perceptron wielowarstwowy (MLP)
coal structure
near-fault zones
artificial neural networks
multi-layer perceptron (MLP)
Opis:
Wewnętrzna budowa strukturalna węgla kamiennego ze stref uskokowych, w szczególności obecność spękań o charakterze egzogenicznym, kataklazy oraz mylonitu, może odpowiadać za zwiększoną pojemność gazową węgla i wskazywać na pokłady szczególnie zagrożone zjawiskami gazo-geodynamicznymi. Problematyka węgla odmienionego strukturalnie jest przedmiotem zainteresowania badaczy z różnych krajów. Zaproponowali oni metody klasyfikacji takiego węgla. W ramach opisywanych badań skupiono się na jednej z takich metod w celu zweryfikowania możliwości wykorzystania sztucznych sieci neuronowych jako narzędzia wspomagającego decyzje dotyczące klasyfikacji poszczególnych struktur. Badania prowadzono na zdjęciach wykonanych przy użyciu mikroskopu optycznego. Zdefiniowano wielowymiarową przestrzeń cech, bazującą głównie na parametrach otrzymanych z różnie zdefiniowanych gradientów. W badaniach wykorzystano dwuwarstwową sieć jednokierunkową (MLP). Jej zastosowanie umożliwiło zweryfikowanie w sposób sformalizowany subiektywnych decyzji obserwatora. W rezultacie badań wykazano, że użycie sztucznych sieci neuronowych pozwala na klasyfikację struktur odmienionych węgla na poziomie 91% zgodności z decyzjami obserwatora-geologa.
The internal structure of hard coal in near-fault zones - in particular, the presence of exogenic cracks, cataclasis and mylonite - can be the decisive factor when it comes to the increased gas capacity of coal and pose a greater risk of the occurrence of gaso-geodynamic phenomena. The problem of structurally altered coal has been of interest to a lot of researchers from various countries, who have proposed certain methods of classifying such coal. As part of the described research, one of such methods was analyzed, with the aim of verifying the possibilities of using artificial neural networks as a tool facilitating the classification of particular structures. The analysis was performed with the use of photographs taken with the optical microscope. A multidimensional feature space was determined, based mainly on the parameters obtained from differently defined gradients. A two-layer, unidirectional network (MLP) was used in the research, which made it possible to verify - in a formalized way - subjective decisions of the researcher. The tests ultimately demonstrated that the application of artificial neural networks results in successful classification of the altered structures of coal, with the level of compatibility with the decisions made by a researcher-geologist at ca. 91 percent.
Źródło:
Przegląd Górniczy; 2015, 71, 11; 15-20
0033-216X
Pojawia się w:
Przegląd Górniczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych Kohonena do prognozowania dobowego poboru wody.
Application of Kohonen Artificial Neural Networks to the Prediction of Daily Water Consumption.
Autorzy:
Licznar, P.
Łomotowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/237690.pdf
Data publikacji:
2006
Wydawca:
Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
Tematy:
dobowy pobór wody
prognozowanie
sieci neuronowe Kohonena
daily water consumption
prediction
artificial neural networks
perceptron networks
Self-Organizing Feature Map (SOFM)
Opis:
W pracy przedstawiono wyniki badań nad zastosowaniem samoorganizujących sieci Kohonena do prognozowania dobowego poboru wody. Dotychczas do prognozowania poboru wody używano sztucznych sieci neuronowych najprostszych typów, głównie sieci perceptronowych o pojedynczej warstwie ukrytej. Otrzymywano przy tym wyniki porównywalne lub lepsze od modeli stochastycznych opartych o analizę szeregów czasowych, jednakże sieci te nie pozwalały wniknąć w istotę kształtowania się procesu poboru wody. Wagi poszczególnych neuronów sieci perceptronowych, ustalane w trakcie ich uczenia, nie są bowiem powiązane z fizycznymi cechami prognozowanego szeregu czasowego. Z tego względu podjęto próbę zastosowania samoorganizujących sieci Kohonena dla prognozowania dobowego poboru wody w sieci wodociągowej. W badaniach wykorzystano szereg czasowy dobowego zużycia wody z lat 1996-2002 jednego z większych polskich wodociągów. Prognoza była wykonana dwuetapowo. Pierwszym jego etapem było prognozowanie sumarycznego tygodniowego rozbioru wody przy użyciu prostej sieci perceptronowej szeregu czasowego. W następnym etapie prognozowany całkowity, tygodniowy, rozbiór był rozdzielany na poszczególne dni tygodnia, zgodnie z wzorcami rozpoznanymi dla poszczególnych okresów roku przez samoorganizującą się strukturę sieci Kohonena. Otrzymywane wyniki były porównywalne z wcześniejszymi rezultatami autorów, uzyskanymi na tym obiekcie do prognozowania przy wykorzystaniu prostych sieci neuronowych oraz metody wygładzania wykładniczego. Dodatkowym - poznawczym - wynikiem przeprowadzonych badań są opracowane, przy wykorzystaniu sieci samoorganizującej się na zasadzie współzawodnictwa, profile tygodniowego poboru wody.
The objective of the study was to develop a hybrid tool for predicting daily water consumption by the combined use of the perceptron and Kohonen artificial neural networks. The investigations included a 7-year time series of total daily water consumption in the time span of 1996 to 2002, coming from one of Poland's largest water distribution systems. The prediction process was a two-stage one. At the first stage, the Self-Organizing Feature Map (SOFM) was made in order to establish the weekly water distribution patterns that are typical for each season of the year. At the second stage, a simple single hidden layer perceptron networks was built to enable the prediction of total weekly water consumption. Owing to the combined use of the perceptron and Kohonen artificial neural networks it was possible to work out high-quality daily water consumption predictions and to identify typical seasonal patterns of weekly water consumption.
Źródło:
Ochrona Środowiska; 2006, R. 28, nr 1, 1; 45-48
1230-6169
Pojawia się w:
Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies