Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "PV cooling" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Performance Enhancement of a Photovoltaic Module by Passive Cooling Using Water-Based Aluminum Oxide Nano-Fluid
Autorzy:
Hamdan, Mohammad A.
Powiązania:
https://bibliotekanauki.pl/articles/2086398.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
PV cooling
nanotechnology
PV performance
fined PV
Opis:
The performance of a PV (photovoltaic) module relies heavily on the operating temperature. The aim of the current study was to improve PV performance by passive cooling with nano-coated aluminum fins attached to the backside of the photovoltaic panels. Four identical PV panels were installed side by side for simultaneous measurements. The first one (B) is a basic PV that was used for comparison purposes, the second one (N) PV, which is coated with water-based Al2O3 nano-fluid, the third is finned PV (F), with fins being attached to its backside and the Al2O3 nano-fluid coated fins are attached to the backside of the fourth PV (FN). The hourly electrical generated power by each PV, I-V, and I_V curves for each PV were recorded and stored using I-V Checker. In addition, the backside temperature of each PV and the ambient temperature were measured on an hourly basis using K-type thermocouples; the measured temperature values were stored in a data logger. It was found that the (FN) PV gave the best performance compared to the base unit, with an increase in the generated power by 5.77%, followed by the nanocoated (N) PV with an increase of 2.14% and finally the finned (F) PV with an increase of 0.74%. Furthermore, the PV with the nano-coated fins exhibits the lower temperature 31°C, followed by the nano-coated PV, and finally the fined PV, with the backside average temperature of the basic unit being 39°C.
Źródło:
Journal of Ecological Engineering; 2022, 23, 4; 276--283
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cooling techniques for PV panels: A review
Autorzy:
Kozak-Jagieła, Ewa
Cisek, Piotr
Ocłoń, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/35126202.pdf
Data publikacji:
2023
Wydawca:
Radomskie Towarzystwo Naukowe
Tematy:
PV cooling methods
solar energy
photovoltaics cooling efficiency enhancement
performance
PV/T
metody chłodzenia paneli fotowoltaicznych
energia słoneczna
zwiększenie wydajności chłodzenia
wydajność
Opis:
Solar energy is considered one of the most dominant renewable energy sources. It can be used to produce electricity through PV panels. Unfortunatly, this technology is subject to limitations. High operating temperature exceeding 25°C, causes the PV panels to overheat, reducing their lifetime and efficiency. Various approaches to PV cooling are used to overcome these challenges.This paper presents a comprehensive overview of different cooling techniques to increase the performance of PV panels. Passive and active PV cooling systems are analysed using air, water, phase change materials (PCMs) and nanofluids as working agents. A review analysis showed that water cooling is better than air cooling. PCMs, which have recently been gaining in popularity, also deserve attention.
Źródło:
Scientiae Radices; 2023, 2, 1; 47-68
2956-4808
Pojawia się w:
Scientiae Radices
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental Study of Temperature Influence on the Performance of PV/T Cell under Jordan Climate Conditions
Autorzy:
Al-Odat, Mohammed Qassim
Powiązania:
https://bibliotekanauki.pl/articles/2202185.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
PV module
electrical conversion
electrical efficiency
water cooling
cooling
cell temperature
Opis:
The electrical performance and the productivity of PV module depend on two main parameters, i.e. the radiation intensity and the cell operating temperature. The module electrical efficiency and productivity are significantly reduced as its temperature increases. Accordingly, cooling of PV modules is one of the most effective techniques to obtain higher efficiency and productivity as well as to reduce the degradation modes of PV modules due to high temperatures. This research work presents an experimental study carried out to investigate the effect of PV module cooling on the performance of PV module under Irbid city (Jordan) climate conditions. It was found that the electrical efficiency and the productivity of the PV modules were approximately enhanced by 14%. Therefore, water cooling of the PV modules is essential to enhance their performance.
Źródło:
Journal of Ecological Engineering; 2022, 23, 10; 80--88
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design of thermoelectric radiant cooling – photovoltaic panels system in the building
Autorzy:
Abdulghafor, Israa Ali
Mnati, Mohannad Jabbar
Powiązania:
https://bibliotekanauki.pl/articles/2204065.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
thermoelectric panel
cooling capacity
numerical calculations
PV system
Opis:
In this study, a theoretical model is presented to investigate the performance of a thermoelectric (TE) radiant cooling system combined with photovoltaic (PV) modules as a power supply in a building with an ambient temperature reaching more than 45◦C. The combined system TE/PV performance is studied under different solar radiation by using the hourly analysis program and photovoltaic system software. The thermal and electric characteristics of TE are theoretically investigated under various supplied voltages using the multi-paradigm programming language and numerical computing environment. Also, a theoretical analysis of heat transfer between the TE radiant cooling system and an occupied zone from the side, and the other side between the TE radiant cooling system and duct zone is presented. The maximum power consumption by TE panels and building cooling load of 130 kW is predicted for May and June. The 145 units of PV panels could provide about 50% of the power required by TE panels. The thermal and electric characteristics of TE panels results show the minimum cold surface temperature of 15◦C at a supplied voltage between 6 V and 7 V, and the maximum hot surface temperature of 62◦C at a supplied voltage of 16 V. The surface temperature difference between supplied current and supplied power increases as supplied voltage increases. At a higher supplied voltage of 16 V, the maximum surface temperature difference between supplied current, and supplied power of 150◦C, 3.2 A, and 48 W, respectively. The cooling capacity increases as supplied voltage increases, at a surface temperature difference of –10◦C and supplied voltage of 16 V, the maximum cooling capacity is founded at about 60 W. As supplied voltage decreases the coefficient of performance increases. The maximum coefficient of performance is about 5 at the surface temperature difference of –10◦C and supplied voltage of 8 V.
Źródło:
Archives of Thermodynamics; 2022, 43, 4; 85--108
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies