Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Norwegian Sea" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Wpływ zmian temperatury powierzchni oceanu na Morzu Norweskim na temperaturę powietrza na Svalbardzie i Jan Mayen (1982-2002)
The influence of the changes in sea surface temperature of the Norwegian Sea on the air temperature at Svalbard and Jan Mayen (1982-2002)
Autorzy:
Kruszewski, G.
Marsz, A. A.
Zblewski, S.
Powiązania:
https://bibliotekanauki.pl/articles/260931.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powietrza
temperatury powierzchni oceanu
Morze Norweskie
air temperature
sea surface temperature
Norwegian Sea
Opis:
This work deals with correlations between SST in the Norwegian Sea and air temperature at selected stations located in the Atlantic sector of Arctic (Bjornoya, Hornsund, Svalbard-Lufthavn, Ny Alesund and Jan Mayen). The southern and central parts of the Norwegian Sea show the strongest correlation with the air temperature at the above mentioned stations, whereas the northern parts of this sea show weaker correlation. Apart from synchronic correlations (occurring in the same months) asynchronic correlations have been found. The latter are generally much stronger than the synchronic ones. The predominant influence on the changes in air temperature at the stations have the winter SST (JFMA) in the central part of the Norwegian Sea (grid 2° x 2°, 67°N, 010°E). These winter SST show quite strong correlations with monthly air temperature at Bjornoya, Hornsund, Svalbard-Lufthavn and Jan Mayen in July, August and September. At Ny Alesund station the period with statistically significant correlation between the air temperature and the winter SST is limited to September. The strongest correlation can be observed in August (see Table 4). The observed correlations result from modification in atmospheric circulation, caused by increased heat volume in the Norwegian Sea. Such modification is reflected in the increased frequency of occurrence of meridional atmospheric circulation, which is accompanied by the increase in the frequency of air advection from the S to this sector of Arctica. Some correlations which show more significant time shift have also been observed (see Table 5). Winter SST indicate positive correlations with air temperature observed at Bjornoya and Horn-sund in August and September the following year and at Svalbard-Lufthavn in September. At Ny Alesund station the coefficients of correlation with the air temperature in the following year are increased but they do not reach the statistically significant level. Another period with statistically significant correlations is November and December the following year; significant correlations with winter SST occur at Bjornoya (r = 0.71) and all stations located on Spitsbergen (r = 0.57). The correlations of SST with air temperature observed at Jan Mayen the following year are different, i.e. the presence of strong correlations is limited to summer season - July, August and September (r ~ 0.6). The correlations with winter SST occurring in November and December the following year is connected with warm masses carried to this region together with waters with the West Spitsbergen Current. Correlations between SST and air temperature present in summer and at the end of summer the following year may probably be influenced by the modification of atmospheric circulation. The only significant correlation with summer (July and August) SST indicates the temperature of February the following year at stations located on Spitsbergen and Jan Mayen. These correlations are negative (r ~ -0.55 - -0.50). The reason for occurrence of such correlations is not clear. The changeability of winter SST in the central part of the Norwegian Sea explains from 20% (Hornsund) to 32% (Bjornoya) of changeability in annual air temperature at the above mentioned stations in the same year and from 34% (Jan Mayen) to 41% (Hornsund) of changeability in annual air temperature in the following year. The increased level of explanation of changeability in air temperature the following year influenced by winter SST is connected with the delayed flowing of the Atlantic waters to high latitudes carried with the Norwegian Current and the West Spitsbergen Current.
Źródło:
Problemy Klimatologii Polarnej; 2003, 13; 59-78
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tracking trends in eutrophication based on pigments in recent coastal sediments
Autorzy:
Szymczak-Zyla, M.
Krajewska, M.
Winogradow, A.
Zaborska, A.
Breedveld, G.D.
Kowalewska, G.
Powiązania:
https://bibliotekanauki.pl/articles/48555.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
eutrophication
sea water property
pigment
marker
coastal area
sediment
chloropigment
Gdansk Gulf
Norwegian fjord
Opis:
Eutrophication in two different coastal areas — the Gulf of Gdańsk (southern Baltic) and the Oslofjord/Drammensfjord (Norway) — both subject to human pressure and with restricted water exchange with adjacent seas, was investigated and compared. Sediment cores (up to 20 cm long) were collected at 12 stations using a core sampler, 6 in each of the two areas, and divided into sub-samples. The physicochemical parameters characterizing the adjacent water column and near-bottom water, i.e. salinity, oxygen concentration and temperature, were measured during sample collection. Chlorophylls-a, -b and -c, their derivatives and selected carotenoids were determined for all the samples, as were additional parameters characterizing the sediments, i.e. Corg, Ntot, d13C and d15N, grain size. 210Pb activity was also determined and on that basis sediment mixing and accumulation rates were estimated. The distribution of pigments in sediments was related to environmental conditions, the sampling site location and sediment characteristics. The results are in agreement with other observations that eutrophication in the Gulf of Gdańsk has increased, especially since the 1970s, whereas in the Oslofjord it decreased during the same period. The pigments are better preserved in inner Oslofjord sediments than in those from the Gulf of Gdańsk. The results demonstrate that the sum of chloropigments-a insediments calculated per dry weight of sediments is a valuable measure of eutrophication, providing that the monitoring site is selected properly, i.e. sediments are hypoxic/anoxic and non-mixed. Besides, the results confirm previous observations that the percentages of particular chlorophyll-a derivatives in the sum of chloropigments-a are universal markers of environmental conditions in a basin. The ratios of chloropigments-b and chlorophylls-c to the sum of chloropigments-a (SChlns-b/ SChlns-a; Chls-c/SChlns-a) may by applied as complementary markers of freshwater and marine organic matter input, respectively.
Źródło:
Oceanologia; 2017, 59, 1
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ zmian temperatury wód w Bramie Farero-Szetlandzkiej na temperaturę powietrza w Arktyce (1950-2005)
The influence of changes of the water temperature in the Faeroe-Shetland Channel on the air temperature in Arctic (1950-2005)
Autorzy:
Marsz, A. A.
Przybylak, R.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260775.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powierzchni oceanu
temperatura powietrza
Brama Farero-Szetlandzka
Prąd Norweski
Arktyka
sea surface temperature
air temperature
Faeroe-Shetland Channel
Norwegian Current
Arctic
Opis:
Praca analizuje związki między wskaźnikiem charakteryzującym zasoby ciepła w wodach atlantyckich wprowadzanych do Prądu Norweskiego, a dalej przez Prąd Zachodniospitsbergeński i Prąd Nordkapski do Arktyki, a roczną temperaturą powietrza w Arktyce. Analizę związków przeprowadzono dla Arktyki jako całości oraz jej sektorów: atlantyckiego, syberyjskiego, pacyficznego kanadyjskiego i sektora Morza Baffina. Wykazano istnienie silnie rozciągniętych w czasie (od 0 do 9 lat opóźnienia) związków z temperaturą powietrza w całej Arktyce, potwierdzających istotny statystycznie wpływ zmian zasobów ciepła w wodach na zmiany temperatury powietrza w Arktyce. Związki regionalne wykazują silne zróżnicowanie - na wzrost zasobów ciepła niemal natychmiastowo reaguje temperatura powietrza w Arktyce Atlantyckiej, z 2-6 letnim opóźnieniem temperatura powietrza w Arktyce Kanadyjskiej. Związki z temperaturą powietrza w sektorach syberyjskim i pacyficznym nie przekraczają progu istotności statystycznej. Zmiany temperatury powietrza w sektorze Morza Baffina wyprzedzają w czasie zmiany zasobów ciepła w wodach atlantyckich wprowadzanych następnie do Arktyki. To ostatnie może stanowić przyczynę okresowości w przebiegu temperatury powietrza w niektórych częściach Arktyki i strefy umiarkowanej.
Styszyńska (2005, 2007) has shown the existence of clear statistical relationships between heat contents in the waters of the Atlantic flowing towards the Arctic via the Norwegian, West Spitsbergen, and North Cape currents and the air temperature in Spitsbergen, Jan Mayen and Hopen between the years 1982 and 2002. These relationships extend in time: following rises in the heat content of the waters of the Norwegian Current, an increase in air temperature follows in the same year and the following year. Heat contents in the Atlantic waters flowing towards the Arctic are assessed according to the average sea surface temperature (SST) in the Faeroe-Shetland Channel (grid 62°N, 004°W) from January to April. These values are used to calculate a determining indicator such as FS1-42L, established as the average of two successive years: data from one year (k) and the year preceding it (k-1). The aim of this work is to investigate whether there are relationships between FS1-42L and the air temperature in both the whole of the Arctic and in individual Arctic sectors and, if so, what the character of these relationships is. The data analysed were a set of yearly air temperatures for the whole of the Arctic and for particular Arctic sectors (fig. 2) according to Przybylak (2007), as well as a set of monthly SST values including values calculated for the FS1-42L indicator (NOAA NCDC ERSST v.1; Smith and Reynolds, 2002). The primary methodology employed was Cross-Correlation Function Analysis. The FS1-42L was established as a first value, with the yearly air temperature used as a lagged value. The analysis was carried out for a 55-year period, from 1951 to 2005. The analysis showed that, taken as a whole, relationships between heat contents leading to the Arctic and air temperature over the whole of the Arctic (calculated from averages of individual sectors) were not particularly significant, though there was marked significance in these relationships from year 0 (fig. 3) to year +9 (fig. 4). The strongest relationships were those from the same year for which the FS1-42L was dated, after which relationships grew gradually weaker, until they finally disappeared in the tenth year. In the Atlantic sector of the Arctic the relationship was strong and almost immediate (fig 5). In the Siberian (fig. 6) and Pacific (fig. 7) sectors there was an absence of statistically significant relationships, and any that did exist were weak, with varying degrees of ?echo? in air temperature reactions. Air temperature in the Canadian sector (fig. 8) reacted to increases in heat contents with a delay of 2 to 6 years, with the strongest relations from FS1-42L being noted with a 5-year delay. The situation in Baffin Bay was entirely different, with air temperature changes preceding changes in the heat contents of the waters of the Faeroe-Shetland Channel by 1 to 6 years. The maximum strengths of these relations were -5 and -4 per year (fig. 9). Analysis of the reasons for these regional variations in the influence of FS1-42L on air temperature allows us to conclude that a major role is played by the bathymetry of the Arctic Ocean. Atlantic waters sinking beneath Arctic Surface Water (ASW) contribute to changes in the temperature of Arctic Intermediate Water (AIW). Independent of the routes taken by the processes, the influence of AIW on the air temperatures in the Siberian and Pacific sectors is limited, with these sectors being isolated by wide shelves from the Arctic Ocean. In the Canadian sector, which is separated by narrow shelves from deep-water parts of the Arctic Ocean and is situated a relatively short distance from the Atlantic sector, the influence of heat contents on the ASW is apparent, with a certain delay. Changes in the air temperature of the Baffin Bay sector are related to the variable activity of the Labrador Current, bringing cold waters to the North from the Gulf Stream delta. The force of strong cooling waters from the Labrador Current, with the appropriate delay, result in a lessening of the heat contents in the Faroe-Shetland Channel. Because of the fact that there is a strong positive correlation between the yearly air temperatures of the Canadian and Baffin Bay sectors, a chain of dependencies emerges: air temperature in the American sectors of the Arctic the flow of Atlantic waters FS1-42L air temperature in the Atlantic Arctic sector Ž air temperature in the Canadian sector should generate quasi-periodic (> 10 years) air temperature courses.
Źródło:
Problemy Klimatologii Polarnej; 2007, 17; 45-59
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies