Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Neural Networks" wg kryterium: Temat


Tytuł:
Prediction of penetration rate of rotary-percussive drilling using artificial neural networks – a case study
Prognozowanie postępu wiercenia przy użyciu wiertła udarowo-obrotowego przy wykorzystaniu sztucznych sieci neuronowych – studium przypadku
Autorzy:
Aalizad, S. A.
Rashidinejad, F.
Powiązania:
https://bibliotekanauki.pl/articles/219500.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
prędkość wiercenia
wiertło obrotowo-udarowe
sztuczne sieci neuronowe
urządzenia udarowe
kopalnia rud żelaza Sangan
penetration rate
rotary-percussive drilling
artificial neural networks
top hammer drilling
Sangan iron mine
Opis:
Penetration rate in rocks is one of the most important parameters of determination of drilling economics. Total drilling costs can be determined by predicting the penetration rate and utilized for mine planning. The factors which affect penetration rate are exceedingly numerous and certainly are not completely understood. For the prediction of penetration rate in rotary-percussive drilling, four types of rocks in Sangan mine have been chosen. Sangan is situated in Khorasan-Razavi province in Northeastern Iran. The selected parameters affect penetration rate is divided in three categories: rock properties, drilling condition and drilling pattern. The rock properties are: density, rock quality designation (RQD), uni-axial compressive strength, Brazilian tensile strength, porosity, Mohs hardness, Young modulus, P-wave velocity. Drilling condition parameters are: percussion, rotation, feed (thrust load) and flushing pressure; and parameters for drilling pattern are: blasthole diameter and length. Rock properties were determined in the laboratory, and drilling condition and drilling pattern were determined in the field. For create a correlation between penetration rate and rock properties, drilling condition and drilling pattern, artificial neural networks (ANN) were used. For this purpose, 102 blastholes were observed and drilling condition, drilling pattern and time of drilling in each blasthole were recorded. To obtain a correlation between this data and prediction of penetration rate, MATLAB software was used. To train the pattern of ANN, 77 data has been used and 25 of them found for testing the pattern. Performance of ANN models was assessed through the root mean square error (RMSE) and correlation coefficient (R2). For optimized model (14-14-10-1) RMSE and R2 is 0.1865 and 86%, respectively, and its sensitivity analysis showed that there is a strong correlation between penetration rate and RQD, rotation and blasthole diameter. High correlation coefficient and low root mean square error of these models showed that the ANN is a suitable tool for penetration rate prediction.
Postęp wiercenia przy wierceniach skał jest jednym z podstawowych parametrów decydujących o opłacalności przedsięwzięcia. Całkowite koszty prowadzenia prac wiertniczych określa się w oparciu o prognozowane tempo postępu wiercenia, parametr ten uwzględnia się następnie przy planowaniu prac wydobywczych. Niektóre spośród licznych czynników wpływających na postęp wiercenia przy użyciu wiertła obrotowo-udarowego nie zostały jeszcze w pełni rozpoznane. Przy prognozowaniu postępu wiercenia prowadzonego przy użyciu urządzeń udarowo-obrotowych uwzględniono cztery rodzaje skał obecnych w kopalni Sangan, leżącej w prowincji Khorasan-Razavi w północno -wschodniej części Iranu. Wybrane czynniki mające wpływ na postęp prac wiertniczych pogrupowano w trzy kategorie: właściwości skał, warunki prowadzenia prac wiertniczych oraz plan prowadzenia wiercenia. Parametry określające właściwości skał to gęstość, jakość skał (RQD) i wytrzymałość na ściskanie jednoosiowe, wytrzymałość skał otrzymywana w oparciu o test brazylijski, porowatość, twardość Mohra, moduł Younga, prędkość propagacji fali, Parametry określające warunki prowadzenia wierceń obejmują: udar, prędkość obrotowa, siła naporu, ciśnienie płukania, zaś parametry związane z planem prowadzenia wiercenia obejmują: wymiary otworu wiertniczego i długość. Właściwości skał określono laboratoryjnie, warunki i plan wierceń badano w terenie. Korelacji pomiędzy prędkością postępu wiercenia i właściwościami skał oraz warunkami i planem prac wiertniczych poszukiwano przy użyciu sztucznych sieci neuronowych (ANN). Zbadano 102 otwory wiertnicze, przeanalizowano warunki prowadzenia wierceń, plany prac i zarejestrowano czasy ich prowadzenia. W celu znalezienia korelacji pomiędzy tymi danymi a prognozowaną prędkością wiercenia wykorzystano oprogramowanie MATLAB. W treningu sieci neuronowej wykorzystano 77 danych, 25 z nich otrzymano w drodze testowania wzorca. Wyniki działania sieci neuronowych oceniono w oparciu o błąd średniokwadratowy (RMSE) oraz współczynnik korelacji (R2). Dla zoptymalizowanego modelu (14-14-10-1) błąd średniokwadratowy i współczynnik korelacji wynoszą odpowiednio 0.1865 i 86%. Analiza wrażliwości wykazała istnienie silnej korelacji pomiędzy prędkością wiercenia a jakością skały, prędkością obrotową wiertła i średnicą otworu wiertniczego. Wysoki współczynnik korelacji i niska wartość błędu średniokwadratowego otrzymana dla tych modeli wskazuje, że metody wykorzystujące sztuczne sieci neuronowe są odpowiednie do prognozowania prędkości wiercenia.
Źródło:
Archives of Mining Sciences; 2012, 57, 3; 715-728
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of artificial neural networks for shortterm prediction of container train flows in direction of China – Europe via Kazakhstan
Autorzy:
Abdirassilov, Z.
Sładkowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/375202.pdf
Data publikacji:
2018
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
container train
international transport corridor
artificial neural networks
pociąg kontenerowy
międzynarodowy korytarz transportowy
sztuczna sieć neuronowa
Opis:
International container transport plays an important role in the exchange of goods between China and Europe, and accordingly, the efficiency of the transportation increases with the organization of special container lines (land and sea). Owing to its geographical location, the territory of Kazakhstan has become one of the main international landlines for passage of container cargo in recent years. Priority is given to solution of such problems as reduction of cargo delivery time, simplification of customs operations, setting attractive and competitive tariffs, ensuring a high degree of cargo safety, development of transport infrastructure, assessment of the transit potential of railway network of the country, and predicting future cargo flows. This article shows the use of artificial neural networks (ANN) for predicting container train flows in the direction of China – Europe. For this purpose, a three-layer perceptron with a learning algorithm, based on the back-propagation of the error signal, was used. A concreto example shows how the ANN training process is conducted and how the adjustable parameters are selected.
Źródło:
Transport Problems; 2018, 13, 4; 103-113
1896-0596
2300-861X
Pojawia się w:
Transport Problems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of EEG Signals Using Quantum Neural Network and Cubic Spline
Autorzy:
Abdul-Zahra Raheem, M.
AbdulRazzaq Hussein, E.
Powiązania:
https://bibliotekanauki.pl/articles/227206.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
signals
ERP signals
cubic spline
neural networks
quantum neural network
Opis:
The main aim of this paper is to propose Cubic Spline-Quantum Neural Network (CS-QNN) model for analysis and classification of Electroencephalogram (EEG) signals. Experimental data used here were taken from seven different electrodes. The work has been done in three stages, normalization of the signals, extracting the features by Cubic Spline Technique (CST) and classification using Quantum Neural Network (QNN). The simulation results showed that five types of EEG signals were classified with an average accuracy for seven electrodes that is 94.3% when training 70% of the features while with an average accuracy of 92.84% when training 50% of the features.
Źródło:
International Journal of Electronics and Telecommunications; 2016, 62, 4; 401-408
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using artificial neural networks to predict the reference evapotranspiration
Autorzy:
Abo El-Magd, Amal
Baraka, Shaimaa M.
Eid, Samir F.M.
Powiązania:
https://bibliotekanauki.pl/articles/27312640.pdf
Data publikacji:
2023
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
climate data
ETo calculator
feedforward artificial neural networks
Penman-Monteith method
reference evaporation
root mean square error
Opis:
Artificial neural network models (ANNs) were used in this study to predict reference evapotranspiration (ETo) using climatic data from the meteorological station at the test station in Kafr El-Sheikh Governorate as inputs and reference evaporation values computed using the Penman-Monteith (PM) equation. These datasets were used to train and test seven different ANN models that included different combinations of the five diurnal meteorological variables used in this study, namely, maximum and minimum air temperature (Tmax and Tmin ), dew point temperature (Tdw), wind speed (u), and precipitation (P), how well artificial neural networks could predict ETo values. A feed-forward multi-layer artificial neural network was used as the optimization algorithm. Using the tansig transfer function, the final architected has a 6-5-1 structure with 6 neurons in the input layer, 5 neurons in the hidden layer, and 1 neuron in the output layer that corresponds to the reference evapotranspiration. The root mean square error (RMSE) of 0.1295 mm∙day -1 and the correlation coefficient (r) of 0.996 are estimated by artificial neural network ETo models. When fewer inputs are used, ETo values are affected. When three separate variables were employed, the RMSE test values were 0.379 and 0.411 mm∙day -1 and r values of 0.971 and 0.966, respectively, and when two input variables were used, the RMSE test was 0.595 mm∙day -1 and the r of 0.927. The study found that including the time indicator as an input to all groups increases the prediction of ETo values significantly, and that including the rain factor has no effect on network performance. Then, using the Penman-Monteith method to estimate the missing variables by using the ETo calculator the normalised root mean squared error (NRMSE) reached about 30% to predict ETo if all data except temperature is calculated, while the NRMSE reached about of 13.6% when used ANN to predict ETo using variables of temperature only.
Źródło:
Journal of Water and Land Development; 2023, 57; 1--8
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of artificial neural networks to assessment of ship manoeuvrability qualities
Autorzy:
Abramowski, T.
Powiązania:
https://bibliotekanauki.pl/articles/258896.pdf
Data publikacji:
2008
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
neural networks
ship manoeuvrability qualities
Opis:
This paper presents an attempt to applying neural networks for assessment of parameters of standard manoeuvrability tests, i.e. circulation test and zig-zag test. Methodological approach to application of neural networks as well as applied network structures and neuron activation functions are generally presented. Also, results of simulations performed by means of the elaborated networks are given in comparison with test cases selected at random. In order to analyze and reveal general trends, correlation relationships between results from network simulations and test cases were calculated and are presented as well.
Źródło:
Polish Maritime Research; 2008, 2; 15-21
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Advanced gas turbines health monitoring systems
Zaawansowany system monitorowania stanu technicznego w turbinach gazowych
Autorzy:
Adamowicz, M.
Żywica, G.
Powiązania:
https://bibliotekanauki.pl/articles/327586.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
monitoring
gas turbine
vibrations
artificial neural networks
predictive model
monitorowanie
turbina gazowa
wibroakustyka
sieci neuronowe
model predykcyjny
Opis:
An overview of science papers in the field of machine diagnosis has exposed increasing efforts in developing accurate and reliable engine health monitoring systems. Attempts have been made in both diagnostics and prediction of system faults. Essential limitations of the standard monitoring system are discussed in this paper as well as arguments for implementation of the Advanced Gas Turbine Health Monitoring Systems. Examples of implementation are discussed and a comparison between “Enhanced Arrangement” and “Standard Arrangements” is carried out. The individual system components are implemented today using very different methods. Performance degradation of gas turbines is described here with an approach of Condition Based Maintenance and it was shown how the classification method can help to improve equipment operation. The review of signal processing methods was carried out to present strengths and shortcomings of individual methods.
Przegląd literatury w dziedzinie diagnostyki maszyn wykazuje duże zainteresowanie środowiska naukowego opracowaniem niezawodnych i precyzyjnych metod oceny stanu technicznego napędów turbinowych. Prace te mają najczęściej na celu opracowanie systemów służących do bieżącej diagnostyki uszkodzeń pojawiających się podczas pracy jak i prognozowania przyszłych defektów. W artykule przeprowadzono ocenę najczęściej stosowanych metod diagnostycznych jak również omówiono zastosowanie „Zaawansowanego systemu monitorowania stanu technicznego turbin gazowych”. Przedstawione zostało porównanie standardowego i zaawansowanego układu diagnostyczno-sterującego. Indywidualne metody diagnostyczne zostały opisane wraz z przykładami zastosowania. Wykazano, że spadek sprawności turbiny gazowej jest ściśle związany z jej stanem technicznym, który może być stale monitorowany. Oceniono również wpływ metod klasyfikacji uszkodzeń na wykrywalność stopnia degradacji.
Źródło:
Diagnostyka; 2018, 19, 2; 77-87
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks
Autorzy:
Ahmida, Z.
Charef, A.
Becerra, V. M.
Powiązania:
https://bibliotekanauki.pl/articles/908523.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system nieliniowy
sterowanie optymalne
radialna funkcja bazowa
sieć neuronowa
regulacja predykcyjna
sterowanie wyprzedzające
nonlinear systems
optimal control
radial basis functions
neural networks
predictive control
feedforward control
Opis:
A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed online by transforming the tracking problem into a more manageable regulation one, which is solved within the framework of a nonlinear predictive control strategy with guaranteed stability. The feedforward neuro-controller has been designed using the concept of inverse mapping. The proposed control scheme is demonstrated on a simulated single-link robotic manipulator.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 3; 369-381
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A MLMVN with arbitrary complex-valued inputs and a hybrid testability approach for the extraction of lumped models using FRA
Autorzy:
Aizenberg, Igor
Luchetta, Antonio
Manetti, Stefano
Piccirilli, Maria Cristina
Powiązania:
https://bibliotekanauki.pl/articles/91696.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
analog circuits
complex-valued neural networks
lumped model
testability
Opis:
A procedure for the identification of lumped models of distributed parameter electromagnetic systems is presented in this paper. A Frequency Response Analysis (FRA) of the device to be modeled is performed, executing repeated measurements or intensive simulations. The method can be used to extract the values of the components. The fundamental brick of this architecture is a multi-valued neuron (MVN), used in a multilayer neural network (MLMVN); the neuron is modified in order to use arbitrary complex-valued inputs, which represent the frequency response of the device. It is shown that this modification requires just a slight change in the MLMVN learning algorithm. The method is tested over three completely different examples to clearly explain its generality.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 1; 5-19
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An arma type pi-sigma artificial neural network for nonlinear time series forecasting
Autorzy:
Akdeniz, E.
Egrioglu, E.
Bas, E.
Yolcu, U.
Powiązania:
https://bibliotekanauki.pl/articles/91816.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
high order artificial neural networks
pi-sigma neural network, forecasting
recurrent neural network
particle swarm optimization (PSO)
Opis:
Real-life time series have complex and non-linear structures. Artificial Neural Networks have been frequently used in the literature to analyze non-linear time series. High order artificial neural networks, in view of other artificial neural network types, are more adaptable to the data because of their expandable model order. In this paper, a new recurrent architecture for Pi-Sigma artificial neural networks is proposed. A learning algorithm based on particle swarm optimization is also used as a tool for the training of the proposed neural network. The proposed new high order artificial neural network is applied to three real life time series data and also a simulation study is performed for Istanbul Stock Exchange data set.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 2; 121-132
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determination of Input Parameters of the Neural Network Model, Intended for Phoneme Recognition of a Voice Signal in the Systems of Distance Learning
Autorzy:
Akhmetov, B.
Tereykovsky, I.
Doszhanova, A.
Tereykovskaya, L.
Powiązania:
https://bibliotekanauki.pl/articles/226378.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neural networks
phonemes
recognition of a voice signal
system of distance learning
mel-cepstral coefficients
spectral analysis
Opis:
The article is devoted to the problem of voice signals recognition means introduction in the system of distance learning. The results of the conducted research determine the prospects of neural network means of phoneme recognition. It is also shown that the main difficulties of creation of the neural network model, intended for recognition of phonemes in the system of distance learning, are connected with the uncertain duration of a phoneme-like element. Due to this reason for recognition of phonemes, it is impossible to use the most effective type of neural network model on the basis of a multilayered perceptron, at which the number of input parameters is a fixed value. To mitigate this shortcoming, the procedure, allowing to transform the non-stationary digitized voice signal to the fixed quantity of mel-cepstral coefficients, which are the basis for calculation of input parameters of the neural network model, is developed. In contrast to the known ones, the possibility of linear scaling of phoneme-like elements is available in the procedure. The number of computer experiments confirmed expediency of the fact that the use of the offered coding procedure of input parameters provides the acceptable accuracy of neural network recognition of phonemes under near-natural conditions of the distance learning system. Moreover, the prospects of further research in the field of development of neural network means of phoneme recognition of a voice signal in the system of distance learning is connected with an increase in admissible noise level. Besides, the adaptation of the offered procedure to various natural languages, as well as to other applied tasks, for instance, a problem of biometric authentication in the banking sector, is also of great interest.
Źródło:
International Journal of Electronics and Telecommunications; 2018, 64, 4; 425-432
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automation of Information Security Risk Assessment
Autorzy:
Akhmetov, Berik
Lakhno, Valerii
Chubaievskyi, Vitalyi
Kaminskyi, Serhii
Adilzhanova, Saltanat
Ydyryshbayeva, Moldir
Powiązania:
https://bibliotekanauki.pl/articles/2124744.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
information security
audit
Bayesian network
artificial neural networks
Opis:
An information security audit method (ISA) for a distributed computer network (DCN) of an informatization object (OBI) has been developed. Proposed method is based on the ISA procedures automation by using Bayesian networks (BN) and artificial neural networks (ANN) to assess the risks. It was shown that such a combination of BN and ANN makes it possible to quickly determine the actual risks for OBI information security (IS). At the same time, data from sensors of various hardware and software information security means (ISM) in the OBI DCS segments are used as the initial information. It was shown that the automation of ISA procedures based on the use of BN and ANN allows the DCN IS administrator to respond dynamically to threats in a real time manner, to promptly select effective countermeasures to protect the DCS.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 3; 549--555
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural Based Autonomous Navigation of Wheeled Mobile Robots
Autorzy:
Al-Sagban, M.
Dhaouadi, R.
Powiązania:
https://bibliotekanauki.pl/articles/384293.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
reactive navigation
obstacle avoidance
autonomous ground robots
recurrent neural networks
Opis:
This paper presents a novel reactive navigation algorithm for wheeled mobile robots under non-holonomic constraints and in unknown environments. Two techniques are proposed: a geometrical based technique and a neural network based technique. The mobile robot travels to a pre-defined goal position safely and efficiently without any prior map of the environment by modulating its steering angle and turning radius. The dimensions and shape of the robot are incorporated to determine the set of all possible collision-free steering angles. The algorithm then selects the best steering angle candidate. In the geometrical navigation technique, a safe turning radius is computed based on an equation derived from the geometry of the problem. On the other hand, the neural-based technique aims to generate an optimized trajectory by using a user-defined objective function which minimizes the traveled distance to the goal position while avoiding obstacles. The experimental results demonstrate that the algorithms are capable of driving the robot safely across a variety of indoor environments.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2016, 10, 2; 64-72
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Beta neuro-fuzzy systems
Autorzy:
Alimi, A. M.
Powiązania:
https://bibliotekanauki.pl/articles/1931568.pdf
Data publikacji:
2003
Wydawca:
Politechnika Gdańska
Tematy:
beta function
kernel based neural networks
Sugeno fuzzy model
neuro-fuzzy systems
universal approximation property
learning algorithms
incremental learning
Opis:
In this paper we present the Beta function and its main properties. A key feature of the Beta function, which is given by the central-limit theorem, is also given. We then introduce a new category of neural networks based on a new kernel: the Beta function. Next, we investigate the use of Beta fuzzy basis functions for the design of fuzzy logic systems. The functional equivalence between Beta-based function neural networks and Beta fuzzy logic systems is then shown with the introduction of Beta neuro-fuzzy systems. By using the SW theorem and expanding the output of the Beta neuro-fuzzy system into a series of Beta fuzzy-based functions, we prove that one can uniformly approximate any real continuous function on a compact set to any arbitrary accuracy. Finally, a learning algorithm of the Beta neuro-fuzzy system is described and illustrated with numerical examples.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2003, 7, 1; 23-41
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of flotation efficiency of phosphate minerals in mine tailings using polymeric depressants : experiments and machine learning
Autorzy:
Alsafasfeh, Ashraf
Alagha, Lana
Alzidaneen, Ala
Nadendla, Venkata Sriram Siddhardh
Powiązania:
https://bibliotekanauki.pl/articles/2146912.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
phosphate tailing
froth flotation
polymers
chitosan
artificial neural networks
Opis:
In this study, direct froth flotation experiments were conducted on silicate-rich phosphate tailing samples. The average grade of P2O5 in the flotation feed was 21.6% as determined using a combination of spectroscopic techniques including X-ray powder diffraction (XRD), mineral liberation analysis (MLA), and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Two polymers were selected to promote the depression of silicates and enhance the flotation of phosphates: in-house synthesized hybrid polyacrylamide (Hy-PAM) and chitosan. Flotation efficiency of phosphates was evaluated at different flotation conditions including depressant type, depressant dosage, pH, and the flotation time. Results indicated that the optimum flotation efficiency of phosphate minerals (84.6% recovery at 28.6% grade of P2O5) was obtained when Hy-PAM was utilized at the studied range of pH and flotation time. All datasets produced from the flotation experiments were integrated within the framework of machine learning (ML) using artificial neural networks (ANNs). The ANN platform was trained, validated, and successfully employed to predict the process outcomes in relation to the pulp and reagents characteristics, which in turn were used to determine the optimum values of process variables. Coefficient of determination (R2), mean absolute error (MAE), and root-mean-square error (RMSE) were used as model indicators. Optimization results showed that the peak flotation performance could be achieved at higher dosages of both polymers. However, lower pH and shorter flotation time for Hy-PAM, and higher pH and longer flotation time for chitosan, were predicted to give the optimum process efficiency.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 4; art. no. 150477
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of data mining techniques to predict and map the Atterberg limits in central plateau of Iran
Autorzy:
Amin, Peyman
Taghizadeh-Mehrjardi, Ruhollah
Akbarzadeh, Ali
Shirmardi, Mostafa
Powiązania:
https://bibliotekanauki.pl/articles/762833.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Atterberg limits, artificial bee colony, artificial neural networks, support vector machine, regression tree
Opis:
The Atterberg limits display soil mechanical behavior and, therefore, can be so important for topics related to soil management. The aim of the research was to investigate the spatial variability of the Atterberg limits using three most common digital soil-mapping techniques, the pool of easy-to-obtain environmental variables and 85 soil samples in central Iran. The results showed that the maximum amount of liquid limit (LL) and plastic limit (PL) were obtained in the central, eastern and southeastern parts of the study area where the soil textural classes were loam and clay loam. The minimum amount of LL and PL were related to the northwestern parts of the study area, adjacent to the mountain regions, where the samples had high levels of sand content (>80%). The ranges of plasticity index (PI) in the study area were obtained between 0.01 to 4%. According to the leave-in-out cross-validation method, it should be highlighted the combination of artifiial bee colony algorithm (ABC) and artifiial neural network (ANN) techniques were the best model to predict the Atterberg limits in the study area, compared to the support vector machine and regression tree model. For instance, ABC-ANN could predict PI with RMSE, R2 and ME of 0.23, 0.91 and -0.03, respectively. Our fiding generally indicated that the proposed method can explain the most of variations of the Atterberg limits in the study area, and it could berecommended, therefore, as an indirect approach to assess soil mechanical properties in the arid regions, where the soil survey/sampling is difficult to undertake.
Źródło:
Polish Journal of Soil Science; 2018, 51, 2
0079-2985
Pojawia się w:
Polish Journal of Soil Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies