Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "NSL-KDD" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Explainable deep neural network-based analysis on intrusion-detection systems
Autorzy:
Pande, Sagar Dhanraj
Khamparia, Aditya
Powiązania:
https://bibliotekanauki.pl/articles/27312883.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
IDS
deep neural network
explainable AI
NSL-KDD
local explainability
global explainability
Opis:
The research on intrusion-detection systems (IDSs) has been increasing in recent years. Particularly, this research widely utilizes machine-learning concepts, and it has proven that these concepts are effective with IDSs – particularly, deep neural network-based models have enhanced the rates of the detection of IDSs. In the same instance, these models are turning out to be very complex, and users are unable to track down explanations for the decisions that are made; this indicates the necessity of identifying the explanations behind those decisions to ensure the interpretability of the framed model. In this aspect, this article deals with a proposed model that can explain the obtained predictions. The proposed framework is a combination of a conventional IDS with the aid of a deep neural network and the interpretability of the model predictions. The proposed model utilizes Shapley additive explanations (SHAPs) that mixes the local explainability as well as the global explainability for the enhancement of interpretations in the case of IDS. The proposed model was implemented by using popular data sets (NSL-KDD and UNSW-NB15), and the performance of the framework was evaluated by using their accuracy. The framework achieved accuracy levels of 99.99 and 99.96%, respectively. The proposed framework can identify the top-4 features using local explainability and the top-20 features using global explainability.
Źródło:
Computer Science; 2023, 24 (1); 97--111
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An autoencoder-enhanced stacking neural network model for increasing the performance of intrusion detection
Autorzy:
Brunner, Csaba
Kő, Andrea
Fodor, Szabina
Powiązania:
https://bibliotekanauki.pl/articles/2147134.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
intrusion detection
neural network
ensemble classifiers
hyperparameter optimization
sparse autoencoder
NSL-KDD
machine learning
Opis:
Security threats, among other intrusions affecting the availability, confidentiality and integrity of IT resources and services, are spreading fast and can cause serious harm to organizations. Intrusion detection has a key role in capturing intrusions. In particular, the application of machine learning methods in this area can enrich the intrusion detection efficiency. Various methods, such as pattern recognition from event logs, can be applied in intrusion detection. The main goal of our research is to present a possible intrusion detection approach using recent machine learning techniques. In this paper, we suggest and evaluate the usage of stacked ensembles consisting of neural network (SNN) and autoencoder (AE) models augmented with a tree-structured Parzen estimator hyperparameter optimization approach for intrusion detection. The main contribution of our work is the application of advanced hyperparameter optimization and stacked ensembles together. We conducted several experiments to check the effectiveness of our approach. We used the NSL-KDD dataset, a common benchmark dataset in intrusion detection, to train our models. The comparative results demonstrate that our proposed models can compete with and, in some cases, outperform existing models.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 2; 149--163
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Markov Decision Process based Model for Performance Analysis an Intrusion Detection System in IoT Networks
Autorzy:
Kalnoor, Gauri
Gowrishankar, -
Powiązania:
https://bibliotekanauki.pl/articles/1839336.pdf
Data publikacji:
2021
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
DDoS
intrusion detection
IoT
machine learning
Markov decision process
MDP
Q-learning
NSL-KDD
reinforcement learning
Opis:
In this paper, a new reinforcement learning intrusion detection system is developed for IoT networks incorporated with WSNs. A research is carried out and the proposed model RL-IDS plot is shown, where the detection rate is improved. The outcome shows a decrease in false alarm rates and is compared with the current methodologies. Computational analysis is performed, and then the results are compared with the current methodologies, i.e. distributed denial of service (DDoS) attack. The performance of the network is estimated based on security and other metrics.
Źródło:
Journal of Telecommunications and Information Technology; 2021, 3; 42-49
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal Ensemble Learning Based on Distinctive Feature Selection by Univariate ANOVA-F Statistics for IDS
Autorzy:
Shakeela, Shaikh
Sai Shankar, N.
Mohan Reddy, P.
Kavya Tulasi, T.
Mahesh Koneru, M.
Powiązania:
https://bibliotekanauki.pl/articles/1844624.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ANOVA-F test
cross validation
decision trees
features
NSL-KDD
data set
Opis:
Cyber-attacks are increasing day by day. The generation of data by the population of the world is immensely escalated. The advancements in technology, are intern leading to more chances of vulnerabilities to individual’s personal data. Across the world it became a very big challenge to bring down the threats to data security. These threats are not only targeting the user data and also destroying the whole network infrastructure in the local or global level, the attacks could be hardware or software. Central objective of this paper is to design an intrusion detection system using ensemble learning specifically Decision Trees with distinctive feature selection univariate ANOVA-F test. Decision Trees has been the most popular among ensemble learning methods and it also outperforms among the other classification algorithm in various aspects. With the essence of different feature selection techniques, the performance found to be increased more, and the detection outcome will be less prone to false classification. Analysis of Variance (ANOVA) with F-statistics computations could be a reasonable criterion to choose distinctives features in the given network traffic data. The mentioned technique is applied and tested on NSL KDD network dataset. Various performance measures like accuracy, precision, F-score and Cross Validation curve have drawn to justify the ability of the method.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 2; 267-275
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying a neural network ensemble to intrusion detection
Autorzy:
Ludwig, Simone A.
Powiązania:
https://bibliotekanauki.pl/articles/91620.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
ensemble learning
Deep Neural Networks
NSL-KDD data set
Opis:
An intrusion detection system (IDS) is an important feature to employ in order to protect a system against network attacks. An IDS monitors the activity within a network of connected computers as to analyze the activity of intrusive patterns. In the event of an ‘attack’, the system has to respond appropriately. Different machine learning techniques have been applied in the past. These techniques fall either into the clustering or the classification category. In this paper, the classification method is used whereby a neural network ensemble method is employed to classify the different types of attacks. The neural network ensemble method consists of an autoencoder, a deep belief neural network, a deep neural network, and an extreme learning machine. The data used for the investigation is the NSL-KDD data set. In particular, the detection rate and false alarm rate among other measures (confusion matrix, classification accuracy, and AUC) of the implemented neural network ensemble are evaluated.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 3; 177-178
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies