Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Molecular Simulation" wg kryterium: Temat


Tytuł:
Quantifying the spreading factor to compare the wetting properties of minerals at molecular level – case study: sphalerite surface
Autorzy:
Mohseni, M.
Abdollahy, M.
Poursalehi, R.
Khalesi, M. R.
Powiązania:
https://bibliotekanauki.pl/articles/109377.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
wettability
contact angle
molecular simulation
sphalerite
spreading factor
Opis:
Spreading of water droplet on sphalerite surface was quantified at molecular level and was utilized for comparison of the wetting properties of sphalerite protonated and hydroxylated surfaces. Molecular dynamic simulations were used to characterize the wetting of sphalerite (110) plane. Experimental contact angles of water droplet on sphalerite surfaces were measured and the results were compared with simulated contact angles to ensure that the simulations are accurate enough for calculation of spreading factors. Shape descriptors such as perimeter, area, Feret’s diameters and circularity were used to characterize the shape of droplet-sphalerite interface at molecular level. Using the shape descriptors, different spreading factors were defined and calculated spreading factors were correlated with simulated contact angle. It was shown that spreading factors which were defined as the volume of water droplet divided by the area and Feret’s diameters, with correlation coefficient of 0.98 and 0.97, can be used as accurate tools for wetting comparison of functionalized sphalerite surface at molecular scale. Proposed approach also can be used for investigations on the effect of surface chemical and physical anisotropies on preferred wetting in specific direction at molecular scales.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 646-656
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Oxygen Reduction Activity of Nitrogen-doped Graphene
Autorzy:
Jian-feng, Liu
Ge, Sun
Ting, Wang
Kai, Ning
Bin-xia, Yuan
Wei-guo, Pan
Powiązania:
https://bibliotekanauki.pl/articles/2174819.pdf
Data publikacji:
2022
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
Nitrogen Doping
Graphene
Oxygen Reduction Activity
Molecular Simulation
Opis:
Graphite nitrogen, pyridine nitrogen and pyrrole nitrogen are the main nitrogen types in nitrogen-doped graphene materials. In order to investigate the mechanism of the oxygen reduction activity of nitrogen-doped graphene, several models of nitrogen-doped graphene with different nitrogen contents and different nitrogen types are developed. The nitrogen content is varied from 1.3 at% to 7.8 at%, and the adsorption energy is calculated according to the established models, then the band gaps are analyzed through the optimization results, so as to compare the mag-nitude of the conductivity. Finally, the oxygen reduction activity of graphite nitrogen-doped graphene (GNG) is found to be better than pyridine nitrogen-doped graphene (PDNG) and pyrrole nitrogen-doped graphene (PLNG) when the nitrogen content is lower than 2.6 at%, and the oxygen reduction activity of PDNG is the best when the nitrogen content was higher than 2.6 at%.
Źródło:
Polish Journal of Chemical Technology; 2022, 24, 3; 29--34
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selective flotation of siderite and quartz from a carbonate-containing refractory iron ore using a novel amino-acid-based collector
Autorzy:
Gu, X.
Zhu, Y.
Li, Y.
Han, Y.
Powiązania:
https://bibliotekanauki.pl/articles/110222.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
flotation
quartz
hematite
siderite
refractory iron ores
molecular simulation
Opis:
A novel and highly-efficient amino-acid-based collector, α-ethylenediamine lauric acid (α-EDA-LA), was studied to selectively beneficiate carbonate-containing refractory hematite ores. Single mineral and synthetic mixture flotation tests were carried out to investigate its floating performance. Zeta potential, fourier transform infrared spectroscopy (FTIR) and Density Functional Theory-based molecular simulation were used to identify the adsorption mechanism. The flotation results showed that quartz could be collected effectively at pH 11.0-12.0 in the reverse flotation. For siderite, the recovery peaked at 83.4% at pH 8.0, where siderite presented different floatability from magnetite and hematite. Exploiting such difference, the separation of siderite could be achieved. Zeta-potential measurements showed that α-EDA-LA adsorption on the surfaces of siderite and quartz decreased the corresponding zeta potentials at pH of 8.0-10.0 and 8.0-12.0, respectively. This means the adsorption overcome the electrostatic repulsion between α-EDA-LA and the mineral surfaces. The molecular simulation indicated that no chemisorption took place between α-EDA-LA and quartz. FTIR analysis suggested that α-EDA-LA was adsorbed on quartz via hydrogen bonding. The adsorption of α-EDA-LA on siderite surface was dominated by chemisorption, while further enhanced by hydrogen bonding. This study filled the gap in the research on siderite flotation reagents and its adsorption mechanism.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 803-813
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Molecular simulation study on hydration of low-rank coal particles and formation of hydration film
Autorzy:
Xia, Yangchao
Yang, Zili
Xing, Yaowen
Gui, Xiahui
Powiązania:
https://bibliotekanauki.pl/articles/949689.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
low rank coal
water molecule
hydration film
molecular simulation
Opis:
Water molecules in low-rank coal (LRC) significantly influence its upgrading and utilization. To investigate the hydration of LRC particles and the formation of a hydration film, molecular simulation techniques were innovatively used, including molecular dynamics (MD) simulations and density functional theory (DFT) calculations. The adsorption of water molecules on LRC and various oxygen-containing groups was analyzed. The results show that water molecules adsorb close to the LRC surface and form a large overlapping layer at the LRC/water interface. The radial distribution functions (RDFs) show that the adsorption affinity of water molecules on oxygen-containing sites is stronger than that on carbon-containing sites, and the RDF peaks indicate the existence of a hydration film. Moreover, the differences in adsorption between various oxygen-containing groups depend on both the number of hydrogen bonds and the adsorption distances. The calculated binding energies indicate that the adsorption capacity follows the order carboxyl > phenolic hydroxyl > alcoholic hydroxyl > ether linkage > carbonyl. Experimental results show that a high sorption rate exists between water vapor and LRC samples at the beginning of sorption, which verified the simulation results.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 2; 586-596
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Water film structure during rupture as revealed by MDS image analysis
Autorzy:
Truong, N. T.
Dang, L. X.
Lin, C.-L.
Wang, X.
Miller, J. D.
Powiązania:
https://bibliotekanauki.pl/articles/110251.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
image processing
molecular dynamics simulation
film stability
molecular porosity
Opis:
The structure of thin water films during the rupture process was investigated by a new approach, which combines molecular dynamics simulation (MDS) with image processing analysis. The analysis procedure was developed to convert MDS trajectories to readable 3D images. The water films were studied at different thicknesses by MDS to determine the critical thickness at which the film ruptures. The potential energy of each specific film thickness during the simulation time was analyzed, and the results showed that the potential energy of stable films remained unchanged while the potential energy kept decreasing for films which ruptured during the simulation time. By applying the new procedure, the molecular porosity, which is defined as the void fraction between the volume of molecular pores in the water film and the total volume of the water film, was calculated. The results of molecular porosity for different film thicknesses during the simulation time suggested a critical molecular porosity as 49%. In other words, stable films have a molecular porosity of less than 49%. If a water film has a molecular porosity greater than 49%, rupture occurs during the simulation.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 4; 1060-1069
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of sodium dodecyl glycinate to the flotation of deslimed molybdenum tailings
Autorzy:
Bai, Yang
Li, Caixia
Song, Wangfang
An, Hongyun
Zhao, Jingyu
Powiązania:
https://bibliotekanauki.pl/articles/109790.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
sodium dodecyl glycinate
molybdenum tailings
molecular simulation
nonmetallic minerals
amino acid collector
Opis:
By researching the nonmetallic minerals in molybdenum tailings, this paper investigated the possible application of sodium dodecyl glycinate (SD) to deslimed tailings as an alternative to the large dosage and complex flotation reagent systems of conventional combination collectors (dodecylamine and sodium oleate). The floatability differences of nonmetallic minerals under different SD dosages were analyzed via pure mineral flotation experiments, and the adsorption behavior of SD onto different mineral surfaces was analyzed by quantum chemical calculations. The results of the calculated adsorption structures and energies of the different mineral surfaces show that SD was chemically adsorbed onto the albite (001), phlogopite (010), diopside (110), dolomite (101), calcite (104) and calcite (101) surfaces and that physical adsorption occurred at the phlogopite (001) surface. The corresponding adsorption trend was dolomite > calcite > diopside > albite > phlogopite. These results theoretically verify the feasibility of applying SD to the flotation of nonmetallic minerals in tailings and provide a basis for the selection of inhibitors needed for separating phlogopite from other minerals. In the flotation of deslimed molybdenum tailings, the recoveries of the nonmetallic minerals achieved with SD were close to those in pure mineral flotation, which was greater than the recoveries achieved with dodecylamine and sodium oleate (NaOl), and the dosage was reduced by approximately 25%.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 5; 1120-1131
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of the Glu342Lys mutation in α1-antitrypsin on its structure, studied by molecular modelling methods.
Autorzy:
Jezierski, Grzegorz
Pasenkiewicz-Gierula, Marta
Powiązania:
https://bibliotekanauki.pl/articles/1044164.pdf
Data publikacji:
2001
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
serpins
protein structure
energy minimisation
molecular dynamics simulation
Opis:
The structure of native α1-antitrypsin, the most abundant protease inhibitor in human plasma, is characterised primarily by a reactive loop containing the centre of proteinase inhibition, and a β-sheet composed of five strands. Mobility of the reactive loop is confined as a result of electrostatic interactions between side chains of Glu342 and Lys290, both located at the junction of the reactive loop and the β structure. The most common mutation in the protein, resulting in its inactivation, is Glu342→Lys, named the Z mutation. The main goal of this work was to investigate the influence of the Z mutation on the structure of α1-antitrypsin. Commonly used molecular modelling methods have been applied in a comparative study of two protein models: the wild type and the Z mutant. The results indicate that the Z mutation introduces local instabilities in the region of the reactive loop. Moreover, even parts of the protein located far apart from the mutation region are affected. The Z mutation causes a relative change in the total energy of about 3%. Relatively small root mean square differences between the optimised structures of the wild type and the Z mutant, together with detailed analysis of 'conformational searching' process, lead to the hypothesis that the Z mutation principally induces a change in the dynamics of α1-antitrypsin.
Źródło:
Acta Biochimica Polonica; 2001, 48, 1; 65-75
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Molecular simulation of adsorption from dilute solutions
Autorzy:
Billes, Werner
Tscheliessnig, Rupert
Fischer, Johann
Powiązania:
https://bibliotekanauki.pl/articles/1041376.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
dilute solutions
potential of mean force
adsorption
change of free energy
molecular simulation
Opis:
Adsorption of biomolecules on surfaces is a perennial and general challenge relevant to many fields in biotechnology. A change of the Helmholtz free energy ΔA takes place when a molecule becomes adsorbed out of a bulk solution. The purpose of our investigations is to explore routes for the calculation of ΔA by molecular simulations. ΔA can be obtained both by integration over the mean force on a molecule and via the local density. It turns out that the route via the potential of mean force prevails over the latter due to better consistency. In this work we present results for systems of 1-centre and 2-centre Lennard-Jones mixtures at a 9/3 Lennard-Jones wall.
Źródło:
Acta Biochimica Polonica; 2005, 52, 3; 685-689
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flotation and molecular dynamics simulation of muscovite with mixed anionic/cationic collectors
Autorzy:
Bai, Yang
Li, Caixia
An, Hongyun
Wang, Guoliang
Zhao, Xin
Zhang, Jinqi
Powiązania:
https://bibliotekanauki.pl/articles/110125.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
muscovite
mixed anionic/cationic collectors
flotation
molecular dynamics simulation
Opis:
In this study, three kinds of anionic collectors (sodium oleate (NaOl), sodium dodecyl sulfonate (SDS) and naphthenic acid (NA)) were used in combination with dodecylamine (DDA) to investigate the flotation behavior of muscovite under the action of different mixed anionic/cationic collectors, and their mechanisms for adsorption on the muscovite (001) Surface were clarified using molecular dynamics simulations. The flotation results indicated that different mixed anionic/cationic collectors could improve the recovery of muscovite to varying degrees, but the optimum molar ratio of anionic collectors to DDA and the optimum mixed collector dosage were different. Molecular dynamics simulations showed that the mixed anionic/cationic collectors could significantly increase the hydrophobicity of the muscovite, as evidenced by the decrease in the calculated water molecule density on the muscovite surface and the diffusion coefficient of water molecules at the solid/liquid interface. The interaction between the amino group and the polar group of anionic collectors reduced the electrostatic repulsion between DDA cations and theoretically increased the adsorption capacity of the mixed anionic/cationic collectors on the muscovite surface. Moreover, DDA/NA and DDA/NaOl could improve the calculated carbon atom density on the muscovite surface, which enhanced the hydrophobic association between nonpolar carbon chains, thus further achieving an enhanced flotation performance.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 2; 313-324
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Molecular dynamics study of the fracture of single layer buckled silicon monosulfide and germanium selenide
Autorzy:
Le, M.-Q
Powiązania:
https://bibliotekanauki.pl/articles/38629974.pdf
Data publikacji:
2022
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
2D materials
fracture
molecular dynamics simulation
mechanical properties
Opis:
Molecular dynamics simulations were conducted with the Stillinger–Weber potential at room temperature to study the mechanical properties and find the mode-I critical stress intensity factor of buckled two-dimensional (2D) hexagonal silicon mono-sulfide (SiS) and germanium selenide (GeSe) sheets. Uniaxial tensile tests were simulated for pristine and pre-cracked sheets. 2D Young’s modulus of SiS and GeSe are estimated at 38.3 and 26.0 N/m, respectively. Their 2D fracture strength is about 3.1–3.5 N/m. By using the initial crack length with the corresponding fracture stress, their mode-I critical stress intensity factor is estimated in the range from 0.19 through 0.22 MPapm. These values differ within 5% from those obtained by the surface energy and are very small compared to the reported fracture toughness of single-crystalline monolayer graphene.
Źródło:
Archives of Mechanics; 2022, 74, 1; 3-12
0373-2029
Pojawia się w:
Archives of Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The cavitation nuclei transient characteristics of Lennard-Jones fluid in cavitation inception
Autorzy:
Fu, Q.
Zhang, B.
Zhao, Y.
Zhu, R.
Liu, G.
Li, M.
Powiązania:
https://bibliotekanauki.pl/articles/259255.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
cavitation nuclei
molecular dynamics simulation
Lennard-Jones fluid
cavitation inception
nucleation
Opis:
In the field of ocean engineering, cavitation is widespread, for the study of cavitation nuclei transient characteristics in cavitation inception, we applied theoretical analysis and molecular dynamics (MD) simulation to study Lennard-Jones (L-J) fluid with different initial cavitation nuclei under the NVT-constant ensemble in this manuscript. The results showed that in cavitation inception, due to the decrease of liquid local pressure, the liquid molecules would enter the cavitation nuclei, which contributed to the growth of cavitation nuclei. By using molecular potential energy, it was found that the molecular potential energy was higher in cavitation nuclei part, while the liquid molecular potential energy changes greatly at the beginning of the cavitation nuclei growth. The density of the liquid and the surface layer changes more obvious, but density of vapor in the bubble changes inconspicuously. With the growth of cavitation nuclei, the RDF peak intensity increased, the peak width narrowed and the first valley moved inner. When cavitation nuclei initial size reduced, the peak intensity reduced, the corresponding rbin increased. With the decrease of the initial cavitation nuclei, the system pressure and total energy achieved a balance longer, and correspondingly, they were smaller. In addition, at the beginning of the cavitation nuclei growth, the total energy and system pressure changed greatly.
Źródło:
Polish Maritime Research; 2018, S 2; 75-84
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of oxidation on the wetting of coal surfaces by water: experimental and molecular dynamics simulation studies
Autorzy:
Li, E.
Lu, Y.
Cheng, F.
Wang, X.
Miller, J. D.
Powiązania:
https://bibliotekanauki.pl/articles/109792.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
wettability
oxidation
molecular dynamics simulation
hydrogen bonding
contact angles
coal surfaces
Opis:
The wettability of coal surfaces by water continues to be one of the key factors which determines the success of coal flotation. Consequently, oxidation of coal surfaces is a fundamental issue of interest. In this work, the effect of oxidation on the wetting of coal surfaces and the interaction between water molecules and oxygen-containing sites at the coal surface was investigated based on advancing/receding contact angle measurements and molecular dynamics simulations. For the simulation studies, a flat coal surface was constructed with the assistance of the molecular repulsion between graphite surfaces and the assembly of Wiser coal molecules. Our results indicated that the simulated advancing and receding contact angles were very similar, and both of them decreased, as expected, with an increase of hydroxyl sites at the coal surface. The good agreement between the simulated advancing/receding contact angles and the experimental receding contact angle values suggested that the configuration of the systems and the set of parameters for the simulation were appropriate. The spreading of water is mainly due to the hydrogen bonds formed between the interfacial water molecules and the hydroxyl sites at the coal surface. The hydroxyl groups show stronger hydration capacity than other oxygen-containing groups according to the calculated hydrogen bonds and interaction energies.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 4; 1039-1051
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermal Expansion of Explosive Molecular Crystals: Anisotropy and Molecular Stacking
Autorzy:
Qian, W.
Zhang, C.
Xiong, Y.
Zong, H.
Zhang, W.
Shu, Y.
Powiązania:
https://bibliotekanauki.pl/articles/358262.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Przemysłu Organicznego
Tematy:
energetic material
anisotropic thermal expansion
molecular stacking
molecular dynamics simulation
density functional theory method
Opis:
Molecular dynamics simulations of three typical explosive crystals, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 1,1-diamino-2,2- dinitroethene (FOX-7) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), were carried out under NPT ensemble and selected force field. The equilibrium structures at elevated temperatures were obtained, which show that the stacking behaviour of the molecules does not change with temperature. The coefficient of thermal expansion (CTE) values were calculated by linear fitting methods, and the results show that the CTE values are close to the experimental results and are anisotropic. The total energies of the cells expanding along each single crystallographic axis were calculated by the periodic density functional theory method, indicating that the energy change rates are anisotropic, and correlation equations of the energy change vs. CTE values were established. The essence of the anisotropy of the explosive crystal’s thermal expansion was compared and elucidated.
Źródło:
Central European Journal of Energetic Materials; 2014, 11, 1; 59-81
1733-7178
Pojawia się w:
Central European Journal of Energetic Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zinc ion adsorption on carbon nanotubes in an aqueous solution
Autorzy:
Ansari, A.
Mehrabian, M. A.
Hashemipour, H.
Powiązania:
https://bibliotekanauki.pl/articles/779155.pdf
Data publikacji:
2012
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
adsorption
molecular dynamics simulation
heavy metals
electrostatic force
interaction energy
functional groups
Opis:
The literature devoted to numerical investigation of adsorption of heavy metal ions on carbon nanotubes is scarce. In this paper molecular dynamics is used to simulate the adsorption process and to investigate the effect of the infl uencing parameters on the rate of adsorption. The predictions of the molecular dynamics simulation show that the adsorption process is improved with increasing the temperature, pH of solution, the mass of nanotubes, and surface modifi cation of CNT using hydroxyl and carboxyl functional groups. The results predicted by the model are compared with the experimental results available in the literature; the close agreement validates the accuracy of the predictions. This study reveals that the water layers around the carbon nanotubes and the interaction energies play important roles in the adsorption process. The study also shows that electrostatic force controls the attraction of zinc ions on the nanotube sidewall.
Źródło:
Polish Journal of Chemical Technology; 2012, 14, 3; 29-37
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of elastic deformation of amorphous polyethylene in uniaxial tensile test by using molecular dynamics simulation
Sprężyste odkształcenie amorficznego polietylenu w osiowosymetrycznej próbie rozciągania z zastosowaniem symulacji metodą dynamiki molekularnej
Autorzy:
Le, Tien-Thinh
Powiązania:
https://bibliotekanauki.pl/articles/29520276.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
uniaxial tension
molecular dynamics simulation
amorphous polyethylene
elasticity
symulacja dynamiki molekularnej
elastyczność
Opis:
In this paper, the linear elastic response to uniaxial tension of amorphous polyethylene was investigated by using Molecular Dynamics (MD) simulation. The polymeric system was initiated using a Monte Carlo-based technique and then equilibrated by a relaxation sequence at temperature of 100 K under a NPT control. Uniaxial tension test was carried out by modifying the corresponding component of the pressure tensor, with a loading rate of 0.5 bar/ps. The results showed that at 100 K (which is smaller than the glass transition temperature), the amorphous polymeric material exhibited a linear elastic response to uniaxial tension. The obtained Young’s modulus and Poisson’s ratio were also compared with values reported in the literature. Finally, parametric studies were performed on the stress-strain curve as a function of loading axis, number of chains and number of monomer units, respectively.
W pracy przeprowadzono badania metodą dynamiki molekularnej sprężystej odpowiedzi amorficznego polietylenu w osiowosymetrycznej próbie rozciągania. System polimetryczny został zainicjowany metodą Monte Carlo a następnie zrównoważony poprzez relaksację w temperaturze 100 K ze sterowaniem NPT. Próby rozciągania przeprowadzono poprzez zmodyfikowanie odpowiedniej składowej tensora naprężeń, przyjmując prędkość obciążania 0.5 bar/ps. Wyniki wykazały, że w temperaturze 100 K (która jest niższa od temperatury zeszklenia), amorficzny polimer wykazuje liniową sprężystość w próbie rozciągania. Wyznaczone wartości modułu Younga i współczynnika Poissona zostały porównane z danymi literaturowymi. Wreszcie przeprowadzono parametryczną ocenę krzywych naprężenieodkształcenie w zależności od kierunku obciążenia, liczby łańcuchów oraz liczby jednostek monomeru.
Źródło:
Computer Methods in Materials Science; 2020, 20, 2; 38-44
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies