- Tytuł:
- On Efficiency of Selected Machine Learning Algorithms for Intrusion Detection in Software Defined Networks
- Autorzy:
-
Jankowski, D.
Amanowicz, M. - Powiązania:
- https://bibliotekanauki.pl/articles/963945.pdf
- Data publikacji:
- 2016
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
software defined network
intrusion detection
machine learning
Mininet
SDN - Opis:
- We propose a concept of using Software Defined Network (SDN) technology and machine learning algorithms for monitoring and detection of malicious activities in the SDN data plane. The statistics and features of network traffic are generated by the native mechanisms of SDN technology.In order to conduct tests and a verification of the concept, it was necessary to obtain a set of network workload test data.We present virtual environment which enables generation of the SDN network traffic.The article examines the efficiency of selected machine learning methods: Self Organizing Maps and Learning Vector Quantization and their enhanced versions.The results are compared with other SDN-based IDS.
- Źródło:
-
International Journal of Electronics and Telecommunications; 2016, 62, 3; 247-252
2300-1933 - Pojawia się w:
- International Journal of Electronics and Telecommunications
- Dostawca treści:
- Biblioteka Nauki