Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Microzooplankton" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Microbial plankton communities in the coastal Southeastern Black Sea: biomass, composition and trophic interactions
Autorzy:
Aytan, U.
Feyzioglu, A.M.
Valente, A.
Agirbas, E.
Fileman, E.S.
Powiązania:
https://bibliotekanauki.pl/articles/48497.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
phytoplankton
microzooplankton
plankton community
Black Sea
biomass composition
trophic interaction
food web
grazing
Źródło:
Oceanologia; 2018, 60, 2
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Notes on the Occurrence of Tintinnid Ciliates, and the Nasselarian Radiolarian Amphimelissa setosa of the Marine Microzooplankton, in the Chukchi Sea (Arctic Ocean) Sampled each August from 2011 to 2020
Autorzy:
Dolan, John R.
Moon, Jong-Kuk
Yang, Eun Jin
Powiązania:
https://bibliotekanauki.pl/articles/2041957.pdf
Data publikacji:
2021-08-05
Wydawca:
Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
Tematy:
Microzooplankton
plankton
tintinnida
radiolaria
polar seas
Opis:
Here we summarize the results from 10 cruises in the Chukchi Sea, in August, each year from 2011 to 2020. Samples for the qualitative analysis of the microzooplankton were obtained from stations located across the Chukchi Sea using a 20µm plankton net. Conditions encountered, in terms of sea ice coverage and chlorophyll concentrations, varied widely from year to year without any obvious relationship with the composition of the microzooplankton assemblage. Examining a total of 242 samples gathered, we found a total of 44 tintinnid species (morphologically distinct forms). Plotting cumulative number of tintinnid species encountered vs cumulative number of samplings gave a typical species accumulation curve showing no sign of saturation suggesting that continued sampling in the Chukchi Sea will likely yield increases in the tintinnid species catalogue. The tintinnid species found ranged widely in lorica opening diameters (LOD) from about 11 µm to 80 µm in diameter. However, the median size of the LOD of the tintinnid assemblages varied little from year to year ranging only from about 30 µm to 40 µm. Most of the forms encountered were found in samples from only 1 or 2 cruises. Very few forms were found every year throughout the 10 years of sampling. These were 5 species of tintinnids (Acanthostomella norvegica, Leprotintinnus pellucidus, Pytchocylis obtusa, Salpingella acuminata, Salpingella faurei) and the nasselarian radiolarian Amphimelissa setosa. Examples of the morphological variability observed among individuals of Acanthostomella norvegica and Pytchocylis obtusa within single samples are shown with some individuals easily confused with forms described as other species are shown. To our knowledge, our data are the most extensive data set on Chukchi Sea microplankton. We provide all of the data recorded, which may serve as a baseline from which to assess changes projected in Arctic Sea systems, in a supplementary data file.
Źródło:
Acta Protozoologica; 2021, 60; 1-11
1689-0027
Pojawia się w:
Acta Protozoologica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling the seasonal dynamics of marine plankton in the Southern Baltic Sea. Part 1. A Coupled Ecosystem Model
Autorzy:
Dzierzbicka-Glowacka, L.
Powiązania:
https://bibliotekanauki.pl/articles/47615.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
nutrient
Clupea harengus
marine plankton
Baltic Sea
microzooplankton
phytoplankton
Coupled Ecosystem Model
Pseudocalanus elongatus
ecosystem model
Opis:
The paper presents a one-dimensional Coupled Ecosystem Model (1DCEM) consisting of three submodels: a meteorological submodel for the physics of the upper layer and a biological submodel, which is also driven by output from the physical submodel. The biological submodel with a high-resolution zooplankton module and a simple prey-predator module consists of seven mass conservation equations. There are six partial second-order differential equations of the diffusion type for phytoplankton, microzooplankton, mesozooplankton, fish, and two nutrient components (total inorganic nitrogen and phosphate). The seventh equation, an ordinary differential equation, describes the development of detritus at the bottom. In this model the mesozooplankton (herbivorous copepods) is represented by only one species – Pseudocalanus elongatus – and is composed of 6 cohorts. The fish predator is represented by 3 cohorts of early juvenile herring Clupea harengus. Hence, the biological submodel consists of an additional twelve equations, six for weights and six for the numbers in 6 cohorts of P. elongatus, and three equations for the biomasses of 3 predator cohorts. This model is an effective tool for solving the problem of ecosystem bioproductivity and was tested in Part 2 for one partcular year.
Źródło:
Oceanologia; 2005, 47, 4
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling the seasonal dynamics of marine plankton in the Southern Baltic Sea. Part 2. Numerical simulations
Autorzy:
Dzierzbicka-Glowacka, L.
Powiązania:
https://bibliotekanauki.pl/articles/48617.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
turbulence
nutrient
Clupea harengus
encounter rate
marine plankton
Baltic Sea
microzooplankton
phytoplankton
modelling
Pseudocalanus elongatus
seasonal dynamics
Opis:
This work presents numerical simulations of the time-dependent vertical distributions of phytoplankton, microzooplankton, Pseudocalanus elongatus, early juvenile herring (Clupea harengus) and two nutrient components (total inorganic nitrogen and phosphate) using the 1D-Coupled EcosystemMo del with a highresolution mesozooplankton (herbivorous copepods) module for P.elongatus and a simple prey-predator model for early juvenile herring C. harengus. This m odel was discussed in detail in Part 1. The calculations were done for one year (1999) for a station in the Gdańsk Deep (southern Baltic Sea). The results of the simulations were compared with the mean concentrations of nutrients, phytoplankton and zooplankton recorded in situ. The differences between the calculated and mean recorded values of nutrients and phytoplankton are c. 5–30% and depend on the month and depth for which the calculations were done. However, the calculated depth-integrated biomass of P. elongatus differs fromthe mean recorded value. This difference ranges from30 to 50% at the end of May. The 1DCEM model can be used to forecast ecological changes in the southern Baltic Sea.
Źródło:
Oceanologia; 2006, 48, 1
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies