Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Metody prognozowania" wg kryterium: Temat


Tytuł:
DLACZEGO PROGNOZY EKONOMICZNE SĄ NIETRAFNE?
Autorzy:
Beata, Bazeli,
Powiązania:
https://bibliotekanauki.pl/articles/898128.pdf
Data publikacji:
2018-12-11
Wydawca:
Kujawsko-Pomorska Szkoła Wyższa w Bydgoszczy
Tematy:
prognozowanie
prognoza
metody prognozowania
trafność prognozy
Opis:
Przewidywanie przyszłości jest niezbędnym elementem w przygotowaniu ludzkiego działania, a jedną z form przewidywania przyszłości jest prognozowanie. Metodologia prognozowania zjawisk ekonomicznych jest bardzo bogata i nadzwyczaj trudna warsztatowo i dlatego istnieje wiele metod prognozowania. W artykule omówione zostały warunki, w których można wyznaczyć mniej lub bardziej trafne prognozy przyszłego stanu. Celem opracowania jest wskazanie głównych przyczyn zawodności prognoz przy jednoczesnym podkreśleniu konieczności ich opracowywania. Możliwość dowiedzenia się, co nas czeka w przyszłości, jest bardzo kusząca. Gdyby kryło się w niej jakieś niebezpieczeństwo, można by spróbować mu zapobiec albo przynajmniej przygotować się na nie. Jeśliby zaś przyszłość okazała się pomyślna, oczekiwałoby się jej w spokoju. W każdym przypadku, umiejętność przewidywania zmniejsza niepewność i ryzyko związane z przyszłością. Dotyczy to również zjawisk gospodarczych. Niepewność towarzyszy każdej działalności gospodarczej, zarówno w skali mikroekonomicznej, jak i makroekonomicznej. W literaturze często wyróżnia się niepewność behawioralną i niepewność egzogeniczną1. Pierwszy rodzaj związany jest z zachowaniem się uczestników życia gospodarczego, drugi natomiast dotyczy tzw. „stanu natury”. Można powiedzieć, że w przypadku niepewności behawioralnej prawdopodobieństwo pojawienia się danego zdarzenia jest zależne od indywidualnego zachowania się jednostki i nie jest niezmienne w czasie. Poprzez wymianę informacji, umowy handlowe itp. można zredukować rozmiary tego rodzaju niepewności. W przypadku niepewności egzogenicznej na prawdopodobieństwo pojawienia się zdarzenia nie ma wpływu decyzja jednostki. Należy podkreślić, że pojęcia przewidywanie przeszłości nie powinno się rozumieć identycznie jak pojęcia prognozowanie. Są ze sobą powiązane jednak nie są tożsame. Prognozowanie jest jedną z form przewidywania przyszłości. Jest to przewidywanie przyszłych faktów, zjawisk czy zdarzeń na podstawie uzasadnionych przesłanek ustalonych w toku badań naukowych. Jeśli jest ono wykonywane za pomocą metod naukowych i jeśli dotyczy ono zdarzeń związanych z gospodarowaniem, nazywa się je, na ogół, prognozowaniem gospodarczym. Definicja prognozowania jednoznacznie wskazuje, że jest to działanie mające na celu przewidywanie przyszłości z wykorzystaniem dorobku nauki. Wynikiem tego działania jest prognoza2 . Użytkownicy prognozy (zwłaszcza gospodarczej) wymagają, aby przedstawione im prognozy były uzasadnione, a najlepiej uzasadnione naukowo. Zainteresowanie przyszłością w działalności ludzkiej występowało zawsze i ma ono charakter powszechny. Stopień tego zainteresowania bardzo wzrósł w ostatnim okresie. Główną tego przyczyną jest fakt, iż przewidywanie przyszłości jest niezbędnym elementem w przygotowaniu ludzkiego działania. Nie można gospodarować racjonalnie bez konstrukcji prognozy. Jest ona niezbędna zarówno rządowi, politykowi gospodarczemu, samorządowi lokalnemu, producentowi, menedżerom, jak i zwykłemu człowiekowi, który musi w konkretnych warunkach podjąć decyzję wyboru jednej ze stojących do dyspozycji możliwości. Ich znaczenie wzrasta szczególnie w sytuacjach wymagających częstego podejmowania decyzji, które najczęściej dotyczą dalszej lub bliższej przyszłości. Główną trudnością, która się wówczas pojawia, to całkowity brak danych na temat przyszłych stanów różnych procesów i zjawisk w momencie ustalania decyzji. A zatem nie istnieje możliwość ustalenia jednoznacznej miary korzyści płynących z podejmowanych decyzji. Prognozy mogą być zatem konstruowane w celu dostarczania tych dodatkowych informacji zmniejszających lukę informacyjną, a tym samym mogą przyczynić się do zmniejszania ryzyka związanego z podejmowanymi decyzjami i ułatwianie ich podjęcia. W celu zachowania racjonalności podejmowanych decyzji makroekonomicznych należy podejmować próby konstrukcji prognoz, np. określenia poziomów liczbowych takich wielkości jak: inflacja, stopa procentowa, stopa bezrobocia, PKB, płaca, cena itp. Prawidłowy proces prognozowania tych wielkości wymaga uwzględniania szeregu czynników wpływających na nie, czyli m. in.: liczbę ludności, skłonność do konsumpcji, oszczędzania, poziom tych wielkości, wrażliwość indywidualnych konsumentów i podmiotów gospodarczych. Na otoczenie makroekonomiczne składają się zatem: prognozy demograficzne, ekonomiczne, naturalne, technologiczne, polityczno-prawne i społeczno-kulturowe. Zarządzanie gospodarką narodową łączy się z konstrukcją prognoz zarówno wielkości przyszłych dochodów państwa, jak i wydatków. Ze sporządzanych prognoz wynika również konieczność podejmowania określonych działań celem uniknięcia występowania niekorzystnych sytuacji, czy też zmniejszenia ich skutków, ale również celem przyśpieszenia przebiegu pożądanego procesu. Prognozy te są również podstawą sporządzania planów gospodarczych dotyczących polityki państwa: fiskalnej, monetarnej, czy też odnośnie działań na rynku pracy itp. A zatem decyzje oparte na zupełnie nietrafnych prognozach mogą okazać się katastrofalne w skutkach. W gospodarce rynkowej decyzje dotyczące rodzaju i wielkości działalności, wyboru rynków zaopatrzenia i zbytu, cen sprzedaży, technologii itp. podejmuje samodzielny podmiot gospodarczy-przedsiębiorstwo. Prowadzenie działalności gospodarczej w ramach systemu ekonomicznego wymaga opanowania trudnej sztuki podejmowania trafnych decyzji. Decyzje te są określane na podstawie antycypowanych, przyszłych sytuacji, a ich skutki ujawniają się po pewnym czasie od ich wdrożenia. W procesie podejmowania decyzji przyszłość jest więc brana pod uwagę ze względu zarówno na warunki, w jakich będzie realizowana. Potrzeba prognozowania występuje w każdym przedsiębiorstwie, bez względu na to, czy zajmuje się działalnością wytwórczą, usługową czy handlową. Prognozy są zatem częścią systemu wspomagania decyzji menedżerskich i są stosowane w zdecydowanej większości przedsiębiorstw. Współczesne, szybko zmieniające się i konkurencyjne warunki funkcjonowania przedsiębiorstw w gospodarce rynkowej powodują, że decydującego znaczenia w ich efektywnym zarządzaniu nabiera informacja zorientowana na przyszłość. Jedną z najważniejszych umiejętności współczesnego menedżera powinna być zdolność do wykorzystania dostępnych mu danych do sporządzania prognoz i przewidywania przyszłego kierunku rozwoju zjawisk ekonomicznych. Im menedżerowie bardziej precyzyjnie zrozumieją czego należy oczekiwać w przyszłości, tym bardziej będą wykorzystywać pojawiające się szanse i tym skuteczniej unikać zagrożeń. Nowoczesny proces zarządzania i podejmowania decyzji wymaga opracowania obiektywnych rozwiązań, które uzyskiwane są na podstawie wiarygodnych informacji i reprezentatywnych danych. Złożoność problemów zarządzania oraz szybki rozwój produkcji, dystrybucji i transportu implikuje konieczność coraz szerszego stosowania naukowych metod pozwalających na racjonalizację i optymalizację gospodarowania w wielu obszarach działalności. Bez stosowania metod naukowych rozwój nowoczesnego i efektywnego zarządzania jest obecnie niemożliwy. Za pomocą metod prognozowania można uzyskiwać zbiory informacji prognostycznych, dzięki którym współczesny człowiek ma możliwość wyeliminowania niekorzystnych, a czasami wręcz szkodliwych, przedsięwzięć w różnych obszarach swojej działalności. Aby podejmować racjonalne decyzje i stymulować rozwój interesujących nas zjawisk gospodarczych trzeba posiadać umiejętność przewidywania procesów rozwojowych tych zjawisk. Zagadnienia prognostyczne stosowane są zarówno w problemach poznawczych, jak i decyzyjnych. Należy wyraźnie podkreślić, że w podejmowaniu decyzji ważnym okazuje się, poza świadomością korzyści płynących z prognozowania, znajomość jego ograniczeń. Termin „prognoza” wywodzi się od greckiego prognosis i oznacza przewidywanie na podstawie określonych danych. W greckim źródłosłowie pojęcia „pro- -gnoza” można wyróżnić dwa człony: przedrostek pro oraz gnosis. Przedrostek wskazuje na wstępną, przygotowawczą fazę, a określenie gnosis oznacza wiedzę o czymś, co jeszcze nie nastąpiło. Prognozę należy zatem odróżnić od wróżby, przypuszczenia, wizji, przepowiedni, itp. Na gruncie prognozowania sformułowano różnorodne definicje prognozy. Oto dwa kontrastujące ze sobą ujęcia: Z. Czerwiński uważa, że: „Przez prognozę rozumiemy sąd o zajściu określonego zdarzenia w czasie określonym z dokładnością co do momentu (punktu) lub okresu (przedziału) czasu, należącego do przyszłości”3 . Z. Hellwig podaje zaś taką definicję: „Prognozą statystyczną nazywać będziemy każdy sąd, którego prawdziwość jest zdarzeniem losowym, przy czym prawdopodobieństwo tego zdarzenia jest znane i wystarczająco duże dla celów praktycznych”4 . Powyższe definicje są jednymi z wielu definicji. Jest to uwarunkowane różnorodnością sytuacji prognostycznych, celów i metod badań. Zdaniem M. Cieślak5 , prognoza to sąd charakteryzujący się następującymi właściwościami: ■ jest sformułowany z wykorzystaniem dorobku nauki,
■ odnosi się do określonej przyszłości, jest weryfikowany empirycznie, tzn. jest sformułowany precyzyjnie i możliwy do sprawdzenia,

■ jest niepewny, ale akceptowany.
Prognoza służy wspomaganiu procesów decyzyjnych. W związku z tym wyróżnia się trzy podstawowe funkcje prognoz6 : 1. preparacyjną,
2. aktywizującą,

3. informacyjną.
Preparacyjna funkcja prognoz wynika z tego, że jest ona działaniem, które przygotowuje inne działania podejmowane przez decydenta (pojedynczego człowieka, grupę osób, podmiot gospodarczy lub instytucję). Decydent opierając się na sformułowanej przez prognostę prognozie jest w stanie postępować racjonalnie wtedy, kiedy będzie miał do niej zaufanie. Aktywizująca funkcja prognoz polega na pobudzaniu do podejmowania działań sprzyjających realizacji prognozy zapowiadającej korzystne zdarzenia oraz przeciwstawiającej się jej spełnieniu, jeśli przewidywane zdarzenia są oceniane negatywnie (np. prognoza spadku sprzedaży w firmie, czy wzrostu udziału produktów nie odpowiadających normom jakościowym). Informacyjna funkcja prognoz związana jest z oswajaniem społeczeństwa z nadchodzącymi zmianami i zmniejszaniem lęku przed przyszłością. Taką rolę odgrywały w przeszłości proroctwa przepowiadające, np. pomór bydła czy suszę. Ogłoszenie niektórych prognoz może wywołać opanowane reakcje na zmiany, a nawet pełną ich akceptację. Oprócz wymienionych trzech podstawowych, wyróżnia się również funkcje pomocnicze prognoz, a mianowicie7 : ■ funkcję argumentacyjną – prognoza dostarcza decydentom argumentów ułatwiających podejmowanie takich, a nie innych decyzji;
■ funkcję doradczą – prognoza przygotowuje odpowiednie informacje odnoszące się do zjawisk będących przedmiotem procesu decyzyjnego;

■ funkcję mediacyjną – prognoza jest pomocna przy określaniu cen transakcyjnych (np. w procesie kupna-sprzedaży działki budowlanej).
Szeroka tematyka prognozowania oraz formy sporządzanych prognoz wymagają ich usystematyzowania (klasyfikacji). Przy klasyfikacji prognoz wykorzystuje się różne kryteria. Najczęstszą przesłanką klasyfikacji prognoz jest horyzont czasowy, tj. okres, na który zostały one zbudowane. Ze względu na to kryterium wyróżnia się prognozy: krótkookresowe, średniookresowe i długookresowe. Z horyzontem czasowym wiąże się również podział na prognozy operacyjne i strategiczne. Ze względu na charakter czy strukturę prognoz dzielimy je na: prognozy proste i złożone. Ze względu na charakter lub strukturę prognoz, dzieli się je również na ilościowe oraz jakościowe. Kryterium charakteru lub struktury prognoz pozwala na ich podział na jednorazowe i powtarzalne. Prognozy dzielimy również na kompleksowe i sekwencyjne, na samosprawdzające się i destruktywne, na realistyczne i badawcze (w tym ostrzegawcze), prognozy zmiennych sterowalnych i nie sterowalnych itd.8 Prognozy dotyczące zjawisk ekonomiczno-społecznych są zwykle budowane przy wykorzystaniu opinii ekspertów lub modeli, które najlepiej – według określonego kryterium – opisują analizowane zagadnienie. Prognoza jest efektem prognozowania, które jest metodą przewidywania przyszłości. Prognozowanie jest mniej lub bardziej trafne w zależności od wybranej metodologii, przyjętych założeń, celu badania, ilości zmiennych, okresu na podstawie którego prognozujemy oraz okresu na jaki tworzymy prognozę. Dlatego istnieje wiele metod prognozowania. W literaturze przedmiotu brak jest jednoznacznego podziału metod prognozowania9 . Wynika to z faktu, że istnienie wielu złożonych metod prognostycznych i kryteriów ich klasyfikacji utrudnia jednoznaczne zakwalifikowanie poszczególnych metod do określonej grupy. Jedną z najczęściej stosowanych klasyfikacji metod jest ich podział na ilościowe i jakościowe. Metody jakościowe są oparte na sądach, opiniach czy oczekiwaniach. Istotne jest to, że nie jest budowany w tym przypadku model formalny (o charakterze statystyczno-ekonometrycznym). Stanowią one niejako zaprzeczenie podejścia ilościowego do prognozowania. Inną z klasyfikacji metod prognozowania, do której w literaturze jest dużo odwołań, jest podział zaproponowany przez A. Zeliasia10 na metody statystyczno-matematyczne i niematematyczne. W praktyce jest to zbieżne z podziałem na metody ilościowe i jakościowe. Takie klasyfikacje mogą sugerować, że do prognozowania wykorzystuje się jedną z metod, a tak naprawdę nigdy tak nie jest. Przewidywaniem zajmują się praktycznie zawsze eksperci, którzy wykorzystują swoją wiedzę, doświadczenie i intuicję. Mogą oni wykorzystywać m.in. modele matematyczne, statystyczne lub ekonometryczne. W praktyce, w zależności od tego, czy w konkretnym przypadku przeważa modelowanie matematyczne, statystyczne lub ekonometryczne, czy też wiedza, doświadczenie i intuicja eksperta (ekspertów), mówi się o przewidywaniu metodami matematycznymi (ilościowymi) (tj. na podstawie modeli matematycznych, statystycznych lub ekonometrycznych), bądź niematematycznymi, jakościowymi (ekspertologicznymi, heurystycznymi). Metody te w dużej mierze nakładają się na siebie. Powszechnie wiadomo, że eksperci w dużej mierze korzystają z modeli matematycznych, statystycznych lub ekonometrycznych. Z drugiej strony, wiedza, doświadczenie i intuicja ekspertów są niezbędne do wyboru: celu, przedmiotu i okresu badania, zmiennych objaśniających oraz modelu (matematycznego, statystycznego albo ekonometrycznego) przewidywania. Dlatego w praktyce zwykle stosuje się określoną mieszankę metod. Podział na przewidywanie heurystyczne oraz na podstawie modeli matematycznych, statystycznych i ekonometrycznych jest jednak bardzo wygodny, zwłaszcza z dydaktycznego punktu widzenia Metodologia prognozowania zjawisk ekonomicznych jest bardzo bogata i nadzwyczaj trudna warsztatowo. Obserwuje się wiele różnych podejść do tych samych problemów i często w wyniku zastosowania różnych metod otrzymuje się różne prognozy. Każdy prognostyk posługuje się pewną metodą, która także zależy od horyzontu prognozy, dostępności danych, łatwości użycia, łatwości interpretacji wyników oraz od kosztu tworzenia prognozy. Sama przez się narzuca się więc myśl, że trafność prognozy zależy od jakości metody prognozowania i podejścia prognostyka. Istnienie wielu złożonych metod prognostycznych i różny stopień „umiejętności” prognostyka wyklucza otrzymanie takich samych prognoz analizowanego zjawiska. Pomimo dość zaawansowanej metodologii prognozowania, nazbyt często nie udaje się przewidzieć tego, co czeka nas w bliższej lub dalszej przyszłości. Po pierwsze nie istnieją niezawodne metody prognozowania, po drugie zależą od wiedzy, doświadczenia i intuicji prognostyka. Sam fakt występowania różnych definicji i klasyfikacji prognoz, jak również istnienie wielu metod ich wyznaczania świadczy o niemożności wyznaczania jednakowo prawdopodobnych i trafnych prognoz. Wynikiem prognozowania jest prognoza, która w zależności od różnych czynników, w tym przede wszystkim jej wiarygodności, może zostać zaakceptowana lub nie. Niezależnie od tego, prognoza ta może zostać, po upływie momentu lub okresu, na który została zbudowana, zbadana pod względem trafności, co stanowi ocenę pojętej jej wąsko lub szeroko jakości. Analiza trafności prognoz (monitorowanie prognoz) jest również oceną samego działania jakim jest prognozowanie. Oceniając prognozę i prognozowanie często używa się pojęcia błędu prognozy ex ante i błędu prognozy ex post. Nie wchodząc w szczegóły, warto podkreślić, że właściwie tylko niewielka część prognoz może być uzupełniona przez błąd prognozy w momencie jej wyznaczenia (błąd ex ante). Są to głównie prognozy oparte na metodach ekonometrycznych. Dla zdecydowanej większości prognoz, w momencie ich wyznaczenia nie można wyznaczyć prawdopodobieństwa stawianej prognozy. Natomiast wszystkie prognozy mogą być zweryfikowane dopiero po zrealizowaniu się okresu prognozowanego (błędy ex post). Jednakże pomimo dość zaawansowanej metodologii prognozowania, nazbyt często nie udaje się przewidzieć tego, co czeka nas w bliższej lub dalszej przyszłości; błędy prognoz są zbyt duże. W związku z tym pojawia się pytanie: dlaczego prognozy społeczne (w tym ekonomiczne) są nietrafne. Z. Czerwiński podaje warunki, w których można wyznaczyć trafne i dokładne prognozy przyszłego stanu obiektu. Należą do nich11: ■ obiekt jest odizolowany od otoczenia,
■ istnieje prawo nauki obiektu, znane prognostykowi,

■ aktualny stan obiektu jest w pełni rozpoznawalny przez prognostyka.
Nie trzeba nikogo przekonywać, że żaden z warunków potrzebnych do istnienia niezawodnej metody prognozowania nie jest spełniony w sferze zjawisk ekonomicznych. Żaden obiekt ekonomiczny (zjawisko ekonomiczne) nie jest odizolowany od otoczenia. Brak uniwersalnych, niezmiennych w czasie praw, a także brak dokładnego rozpoznania aktualnego stanu obiektów ekonomicznych wyklucza istnienie niezawodnych metod prognozowania. Zdając sobie sprawę z niepewności prognoz, można zapytać czy w ogóle warto się nimi zajmować? Prognozy społeczne nie mogą eliminować niepewności co do przyszłego stanu świata; prognozy te są użyteczne, gdyż tą niepewność redukują. Warto jednak znać i zdawać sobie sprawę z ograniczeń. Do postawienia trafnej prognozy stanu obiektu potrzebna jest z jednej strony znajomość przeszłości obiektu i otoczenia, a z drugiej strony- znajomość powiązań między zmiennymi charakteryzującymi obiekt i otoczenie. Słabość prognozowania jest następstwem słabego rozeznania w powiązaniach między zmiennymi. Brak znajomości praw podobnych do praw przyrody zmusza prognostyków do uciekania się do „substytutów” tych praw, jakimi są modele. Trzeba podkreślić rolę teorii jako ważnego źródła wiedzy o prognozowanym zjawisku. W naukach społecznych zwykle istnieje kilka teorii tego samego zjawiska. Teorie te różnią się założeniami instytucjonalnymi, założeniami behawiorystycznymi, założeniami technicznymi. Określony zbiór założeń stanowi podstawę każdej teorii. Analizując różne teorie, można wybrać te z nich, które wydają się adekwatne do sytuacji prognostycznej oraz wybrać modele z nich wynikające. Występuje tu więc oczywisty związek między trafnością prognoz a rozpoznaniem obiektu tj. wiedzą o obiekcie, którą dysponuje prognostyk, w szczególności znajomością praw rządzących obiektem. Niestety osiągnięty poziom rozwoju nauk ekonomicznych wydaje się relatywnie niski, bo nie ma wypracowanej spójnej całościowej teorii. Świadczy o tym najlepiej rozrzut opinii panujący wśród ekonomistów odnośnie różnych kwestii np. ostatniego kryzysu finansowego. Obecny stan wiedzy ekonomicznej nie pozwala w pełni wyjaśnić tych kwestii, a zatem wykorzystanie tej wiedzy do ingerowania w rzeczywistość oraz do prognozowania tej rzeczywistości jest obciążone wieloma ryzykami, z czego nie wszyscy zdają sobie sprawę. Przyczynowe zależności w ekonomii charakteryzują się na ogół tym, że między zdarzeniem-przyczyną i zdarzeniem-skutkiem występuje pośrednie stadium w postaci ekonomicznej decyzji. Przy czym przyczyna wpływa najpierw na np. na konsumenta, producenta, inwestora podejmującego odpowiednią decyzję, której realizacja jest skutkiem. W ekonomii zazwyczaj mamy do czynienia z taką sytuacją, że pewien skutek jest wynikiem jednoczesnego oddziaływania większej liczby przyczyn. Biorąc pod uwagę fakt, że pomiędzy przyczyną i skutkiem występuje ekonomiczna decyzja jako etap pośredni, można te przyczyny ująć w następujących grupach12: przyczyny ekonomiczne,
■ przyczyny techniczno-przyrodniczo-ekologiczne,

■ przyczyny polityczne i światopoglądowe oraz związane z wykształceniem fachowym,
■ przyczyny psychologiczne.
Na te przyczyny reaguje decydent. Trzecia i czwarta grupa przyczyn różnicuje decydentów ze względu na ich reakcje na przyczyny grupy pierwszej i drugiej. Wiele przyczyn szczególnie z grupy trzeciej i czwartej, najczęściej pomija się w analizie. Teoria ekonomiczna podaje jedynie istotne czynniki zmian zjawiska ekonomicznego. Te czynniki nie mogą wyjaśnić zmian w sposób wyczerpujący, jak również nie pozwalają na przewidywanie zmian w przyszłości z zadowalającą dokładnością. Gdy chodzi o sferę zjawisk ekonomicznych istnieje brak praw naukowych tak dokładnych i bezwyjątkowych, jak prawa przyrody. Korzystanie z dorobku nauki nie gwarantuje więc „prawdziwego” odczytu rzeczywistości i co za tym idzie prawdziwego obrazu przyszłości. Za to ułatwia drogę do owej „prawdy” przez korzystanie ze wskazówek. Wśród przyczyn wpływających na zjawiska ekonomiczne wymienia się, między innymi, przyczyny polityczne i światopoglądowe. I właśnie zmieniająca się sytuacja polityczna często zmienia reguły gry ekonomicznej i przepisy prawno-finansowe. W procesie prognozowania wykorzystuje się dane o obiekcie dla którego sporządza się prognozę, oraz o obiektach stanowiących jego otoczenie. Zmiany zasad gospodarowania niszczą porównywalność tych danych liczbowych. W takich warunkach jest zrozumiałe, że budowa modeli prognostycznych jest zadaniem trudnym, niewdzięcznym i ryzykownym. Powszechnie jednak wiadomo, że prognozy jednych zjawisk gospodarczych okazują się być obarczone niewielkimi błędami, innych zaś-znacznie większymi. Wynika to z faktu, że niektóre zjawiska ekonomiczne są w różnym stopniu sterowane, czyli zależne od decydenta, a niektóre temu nie podlegają. Tylko prognozy zmiennych w pełni sterowanych byłyby bezbłędne, ponieważ ich stany byłyby wyznaczone mocą decyzji. W zagadnieniach społecznych, w tym gospodarczych, siła oddziaływania owych decyzji rzadko jest absolutna, zmienne sterowane zależą bowiem także od zmiennych nie sterowanych, na które decydent nie ma wpływu. Opracowuje się więc prognozy zarówno zmiennych nie sterowanych, jak i sterowanych. Trudność prognozowania w sferze zjawisk ekonomicznych bierze się także stąd, że obiekty gospodarcze nie są ani całkiem sterowane, ani całkiem automatyczne. Wyznaczając prognozę jednej zmiennej najczęściej opieramy się na przyszłych wartościach (prognozach) innych zmiennych, które wpływają na badaną zmienną. Powstaje więc łańcuch prognoz, gdzie trafność prognozy jednej zmiennej zależy od trafności prognoz innych zmiennych. Z uwagi na fakt, że rzadko ma się pewność do tego, jakie to będą wartości, nie chcąc ryzykować podania nietrafnej prognozy, można sformułować tzw. prognozę warunkową. Tak naprawdę, większość prognoz ekonomicznych ma właśnie charakter warunkowy. Jeżeli nie zostaną spełnione „warunki” (założenia) to formułowana prognoza okaże się nietrafna. Dlatego trzeba mieć na uwadze, iż duża część prognoz ma charakter warunkowy i że pozwala jedynie odpowiedzieć na pytanie: co będzie, jeśli? Nawet jednak najbardziej wiarygodna prognoza, dotycząca stabilnych i długotrwałych procesów ekonomicznych, nigdy nie jest i nie może być doskonała. Wynika to z dwóch przyczyn. Po pierwsze, ludzie dostosowują swoje działania do oczekiwań. Jeśli na przykład udałoby się przewidzieć, że za dwa miesiące nastąpi załamanie gospodarcze, to taka prognoza na pewno nie sprawdziłaby się. Jeśli prognoza byłaby wiarygodna, przedsiębiorcy zdążyliby dostosować się do sytuacji przede wszystkim poprzez zmniejszenie kosztów działalności: renegocjację umów o pracę, efektywniejsze wykorzystanie czynników produkcji bądź zastosowanie tańszej metody wytwarzania. W wyniku takiego postępowania załamanie gospodarcze zaczęłoby się wcześniej, miałoby łagodniejszy przebieg albo wręcz w ogóle nie byłoby zauważalne. W każdym przypadku wcześniejsza prognoza nie sprawdziłaby się. Tego typu prognozy często określa się jako prognozy ostrzegawcze, których zadaniem jest przewidywanie zdarzeń niekorzystnych dla odbiorców prognozy. Wówczas taka prognoza jest stymulatorem działań w stosunku do zmiennych sterowanych. Drugą z przyczyn niemożności doskonałego przewidywania jest to, że pewne wydarzenia, mające często decydujący wpływ na przyszłość, cechują się fundamentalną niepewnością. Dobry przykład stanowią wynalazki i odkrycia naukowe. Niektóre z nich, na przykład elektryczność, powodują rewolucyjne zmiany w funkcjonowaniu społeczeństw i kształcie gospodarki. Przewidzenie odkrycia byłoby jednak równoznaczne z jego dokonaniem. Trzeba się więc pogodzić z tym, że o przyszłości nigdy nie będziemy w stanie wiedzieć nic z absolutną pewnością. Prognozy społeczne (w tym gospodarcze) są zawsze niepewne, ale gdyby z nich zrezygnować, błędy w zachowaniu gospodarczym byłyby większe. Warto jednak pamiętać, że: ■ przyszły stan badanej zmiennej ekonomicznej jest wyznaczony przez przyszłe wartości innych zmiennych ekonomicznych i nieekonomicznych. Powstaje w ten sposób łańcuch prognoz, w którym jedne zawieszone są na drugich i trafność prognozy badanej zmiennej zależy od tego czy trafne były prognozy zmiennych objaśniających. Dlatego często prognoza jest jedynie słowem oczekiwań co do prawdopodobnego kierunku rozwoju, przy obecnym stanie wiedzy na temat wszystkich czynników wpływających na kierunek zmian i przy określonych założeniach co do polityki gospodarczej;
■ dodatkowym utrudnieniem prognozowania społecznego ( w tym gospodarczego) jest to, że sama prognoza stanowi zjawisko społeczne, które łącznie z innymi może oddziaływać na prognozowane zdarzenie;

■ im dłuższy horyzont prognozy, tym więcej założeń musi przyjąć prognozujący. Generalnie więc, im dłuższa prognoza, tym bardziej jest ona niepewna;
■ prognozy są często „skażone” osobistymi poglądami tego, kto ich dokonuje. Każdy prognostyk posługuje się pewną metodą, a więc pewnym systematycznym sposobem postępowania (w tym modelem), prowadzącym do postawionego sobie celu, którym jest prognoza. Same modele nie zawsze wystarczą do postawienia prognozy, gdyż prognoza, najczęściej makroekonomiczna, bazuje na połączeniu rezultatów z modelu ekonometrycznego i wiedzy eksperckiej (prognosty). Często zresztą operuje się prognozami eksperckimi, które w ogóle nie są oparte na żadnym modelu, a jedynie na wiedzy i intuicji eksperta.
■ nietrafna prognoza może być wynikiem nadużywania metod ekonometrycznych przez ludzi, którzy ani nie zgłębili ich istoty, ani też nie potrafią ich poprawnie stosować. Używają oni niewłaściwych modeli, przyjmując nieprawidłowe założenia dotyczące zmiennych egzogenicznych;

■ mimo wszelkich postępów w konstrukcji prognoz, coraz inteligentniejszych komputerów i programów służących celom prognostycznym, ekonomiści nie są w stanie zmienić natury obiektów ekonomicznych, które czasem zachowują się nieoczekiwanie, różnie od dotychczas obserwowanych zachowań;

■ zjawiska gospodarcze są bardziej skomplikowane niż np. zjawiska fizyczne. Każde takie zjawisko jest powiązane z dużą liczbą innych zjawisk ekonomicznych i społecznych, a także czysto biologicznych, chemicznych, fizycznych itd. Uwikłanie zjawisk społecznych w dużą liczbę czynników różnej stabilności sprawia, że prawidłowości kształtowania się tych zjawisk są na ogół mniej wyraziste i mniej trwałe w czasie niż w przypadku zjawisk fizycznych. Te okoliczności, a także niesłychanie rzadko występująca możliwość prowadzenia eksperymentów, sprawiają, że prawa nauk społecznych są „słabsze” niż prawa fizyki, a więc stanowią też słabszą podstawę przewidywań;

■ nie można zapominać, że proces prognozowania wymaga odpowiednich nakładów, zarówno pieniężnych jak i czasowych. Stąd rozważanie go w oderwaniu od tych nakładów jest nieuzasadnionym uproszczeniem. Wymaga wysokich kwalifikacji prognostów, stosowania różnych metod, często bardzo zaawansowanych, dużej liczby trudno dostępnych danych, specjalistycznego oprogramowania itp. Wiarygodność prognozy generalnie wzrasta wraz z kosztami poniesionymi na ten proces. Jednak po przekroczeniu pewnej wielkości tych kosztów, całkowite koszty prognozowania, uwzględniające również koszty strat, nie maleją, ponieważ nigdy nie uda się całkowicie wyeliminować czynnika niepewności13.

■ jakkolwiek za jakość prognozy odpowiada prognosta, to decydent musi mieć umiejętność jej oceny, gdyż skutki jego dzisiejszej decyzji ujawnią się w przyszłości.
1 M H. Pesaran, The Limits to Rational Expectations, Basil Blackwell, Oxford 1989
2 P. Dittmann, Prognozowanie w przedsiębiorstwie, Oficyna Ekonomiczna, Kraków 2004; M. Cieślak (red.), Prognozowanie gospodarcze. Metody i zastosowania, PWN, Warszawa 2005; E. Nowak, Prognozowanie gospodarcze. Metody, Modele, Zastosowania, Przykłady, Placet, Warszawa 1998; A. Zeliaś, B. Pawełek, S. Wanat, Prognozowanie ekonomiczne: teoria, przykłady, zadania, PWN, Warszawa 2004; A. Zeliaś, Teoria prognozy, PWE, Warszawa 1997.

3 Z. Czerwiński, Moje zmagania z ekonomią, Akademia Ekonomiczna, Poznań 2002.

4 Z. Hellwig, Prognozy statystyczne, „Zeszyty Naukowe WSE we Wrocławiu” 1963, nr 16.

5 M. Cieślak (red.), Prognozowanie gospodarcze. Metody i zastosowania, PWN, Warszawa 2005.

6 M. Sobczyk, Prognozowanie. Teoria, przykłady, zadania, Placet, Warszawa 2008.

7 M. Witkowski, T. Klimanek, Prognozowanie gospodarcze i symulacje w przykładach i zadaniach, Akademia Ekonomiczna, Poznań 2006.

8 Sama klasyfikacja prognoz mogłaby być przedmiotem osobnego artykułu. Nie jest jednak w tym przypadku niezbędna. Więcej na ten temat klasyfikacji prognoz można znaleźć np. M. Cieślak (red.), Prognozowanie gospodarcze. Metody i zastosowania, PWN, Warszawa 2005; A. Zeliaś, Teoria prognozy, PWE, Warszawa 1997.

9 P. Dittmann, Prognozowanie w przedsiębiorstwie, wyd. 2, Oficyna Ekonomiczna, Kraków 2004; M. Cieślak (red.), Prognozowanie gospodarcze. Metody i zastosowania, PWN, Warszawa 2005; E. Nowak, Prognozowanie gospodarcze. Metody, Modele, Zastosowania, Przykłady, Placet, Warszawa 1998; A. Zeliaś, B. Pawełek, S. Wanat, Prognozowanie ekonomiczne: teoria, przykłady, zadania, PWN, Warszawa 2004; A. Zeliaś, Teoria prognozy, PWE, Warszawa 1997.

10 A. Zeliaś, Teoria prognozy, PWE, Warszawa 1997.

11 Z. Czerwiński, Moje zmagania z ekonomią, Akademia Ekonomiczna, Poznań 2002.

12 Z. Zieliński, Liniowe modele ekonometryczne jako narzędzie opisu i analizy przyczynowych zależności zjawisk ekonomicznych, Wydawnictwo UMK, Toruń 1991.

13 P. Dittmann, Prognozowanie w przedsiębiorstwie, wyd. 2, Oficyna Ekonomiczna, Kraków 2004.
Źródło:
Roczniki Ekonomiczne Kujawsko-Pomorskiej Szkoły Wyższej w Bydgoszczy; 2017, 1(10); 11-23
1899-9573
Pojawia się w:
Roczniki Ekonomiczne Kujawsko-Pomorskiej Szkoły Wyższej w Bydgoszczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda prognozowania sprzedaży w przedsiębiorstwie farmaceutycznym
Autorzy:
Wolak, Malwina
Powiązania:
https://bibliotekanauki.pl/articles/582304.pdf
Data publikacji:
2017
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
prognozowanie sprzedaży
metody prognozowania
modele prognostyczne
Opis:
Proces prognozowania często wzbudza wiele wątpliwości co do jego zasadności. Wskazanie odpowiedniej metody, która pozwoli na zbudowanie precyzyjnej prognozy, jest procesem wieloetapowym. Celem artykułu jest zaprezentowanie wyselekcjonowanych metod prognozowania sprzedaży na przykładzie wybranego preparatu farmaceutycznego. Do osiągnięcia założonego celu zastosowano metody ilościowe: metodę naiwną, model Wintersa oraz metodę jakościową: opinie kierownictwa. Jednoczesne wykorzystanie tych metod do ustalenia prognozy końcowej badanego produktu umożliwia uzyskanie bardziej precyzyjnych szacunków oraz uwzględnienie wielu różnorodnych czynników determinujących prognozę sprzedaży. Specyfika rynku farmaceutycznego kreuje potrzebę przełożenia uwarunkowań tego sektora na dobór właściwych metod prognozowania sprzedaży, co wymaga indywidualnego podejścia zarówno do pojedynczych preparatów, jak i grup produktów. Każda sytuacja prognostyczna może odróżniać się od pozostałych, dlatego należy rozpatrywać je oddzielnie i zwracać uwagę na wszystkie czynniki determinujące daną prognozę sprzedaży.
Źródło:
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu; 2017, 471; 438-448
1899-3192
Pojawia się w:
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rodzina modeli Lee-Cartera
Autorzy:
Ojrzyńska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/587418.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Metody prognozowania
Metody statystyczne
Umieralność
Forecasting methods
Mortality
Statistical methods
Opis:
This paper presents a proposal for the application of selected models of the group of models using the Lee and Carter methodology for forecasting mortality rates. These include the original Lee-Carter, the Lee-Miller (2001) and Booth-Maindonald-Smith (2002) variants, and the more flexible Hyndman-Ullah (2005) and de Jong (2006) extensions. Based on estimates of mortality rates derived from the selected models was verified the ability to use these models to estimate mortality rates in Poland.
Źródło:
Studia Ekonomiczne; 2013, 162; 99-106
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prognozowanie stanu technicznego środków transportu
Forecasting the condition state in transport vehicles
Autorzy:
Tylicki, H. F.
Powiązania:
https://bibliotekanauki.pl/articles/312730.pdf
Data publikacji:
2016
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
badania diagnostyczne
metody prognozowania
logistyka środków transportu
diagnostics
forecasting methods
transport logistics
Opis:
W artykule omówiono metodę rozwiązania problemu utrzymania zdatności środków transportu przy wykorzystaniu procedur prognozowania stanu. W tym celu opracowano i przedstawiono algorytm wyznaczenia zbioru parametrów diagnostycznych, prognozowania wartości parametru diagnostycznego oraz sposobu szacowania terminu i zakresu obsługiwania środków transportu.
The article discusses the method for problem solving regarding the maintenance of transportation vehicles usability by means of the procedures forecasting the condition state. Therefore, the algorithm of diagnostic parameters set, the value forecast of diagnostic parameter, as well as the way of estimating the deadline and the range of transportation vehicles service is developed and presented.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2016, 17, 6; 1189-1192
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Podstawy prognozowania na tle oceny stanu technicznego urządzeń siłowni okrętowych
Basics of Prognosis Versus the Evaluation of Marine Propulsion Plant Technical Condition
Autorzy:
Treichel, P.
Powiązania:
https://bibliotekanauki.pl/articles/360537.pdf
Data publikacji:
2005
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
podstawy prognozowania
metody prognozowania
stan techniczny
OMiUO 2005
background of technical condition prognosis process
prognosis methods
technical condition
Opis:
W artykule przedstawiono zagadnienia dotyczące podstaw prognozowania w ujęciu oceny stanu technicznego urządzeń siłowni okrętowych. Przytoczono definicje prognozowania, podział metod prognozowania oraz omówiono niektóre z nich. Zaprezentowano także wybrane procedury prognozowania.
The paper presents basic information on the prognosis theory in the aspect of technical condition estimation. The prognosis definitions have been given and classification of prognosis methods has been shown. Selected prognosis methods have been shortly described. Algorithms of prognosis procedures have been described.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2005, 5 (77); 449-458
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modele subiektywne w konstrukcji prognoz długookresowych
Subjective Models in the Design of Long-Term Forecasts
Autorzy:
Poradowska, Konstancja
Powiązania:
https://bibliotekanauki.pl/articles/586191.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Metody prognozowania
Modele ekonometryczne
Nowe technologie
Prognozowanie
Econometric models
Forecasting
Forecasting methods
High-tech
Opis:
In the paper are presented some aspects of construction and practical use of subjective forecasting models. The main objective was to identify the usefulness of these models in the design of long-term forecasts and scenarios for the development of new technologies. Theoretical considerations are supplemented with real examples of data analysis, obtained in the study of foresight "zero carbon energy economy in a sustainable development of the Polish to 2050", conducted by the Central Mining Institute in Katowice.
Źródło:
Studia Ekonomiczne; 2013, 124; 29-44
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nowa metoda programowania rozwoju zasobow lesnych w przerebowym sposobie zagospodarowania
Autorzy:
Poznanski, R.
Powiązania:
https://bibliotekanauki.pl/articles/818730.pdf
Data publikacji:
1999
Wydawca:
Polskie Towarzystwo Leśne
Tematy:
gospodarka lesna
rozklad piersnic
gospodarstwa przerebowe
metody prognozowania
zasoby lesne
lesnictwo
struktura drzewostanu
urzadzanie lasu
Źródło:
Sylwan; 1999, 143, 02; 27-38
0039-7660
Pojawia się w:
Sylwan
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka i prognozowanie stanu węzła łożyskowego układu biegowego pojazdu szynowego
Diagnostics and prediction of bearing node condition of the rail vehicle running system
Autorzy:
Antkowiak, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/34656094.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Poznański Instytut Technologiczny
Tematy:
klasyfikacja badań diagnostycznych
metody prognozowania stanu maszyn
węzeł maźniczy
układ biegowy
węzeł łożyska
pojazd szynowy
Opis:
W artykule przedstawiono klasyfikację badań diagnostycznych oraz opisano podstawowe metody prognozowania stanu maszyn. Przedstawiono charakterystykę węzła maźnicznego układu biegowego z wyszczególnieniem elementów składowych. Zaprezentowano kryteria m.in. temperaturowe, fizyko-chemiczne oraz eksploatacyjne łożysk oraz maźnic pojazdów trakcyjnych. Artykuł został opracowany w ramach projektu badawczo-rozwojowego Nr 10 00 4806 pt. "Mikroprocesorowy system diagnostyczny głównych systemów trakcyjnego pojazdu szynowego uwzględniający ocenę bieżącą i prognozowanie stanów", finansowanego z budżetu Ministerstwa Nauki i Szkolnictwa Wyższego.
The classification of diagnostic tests is presented in this article and the basic methods of prediction of the devices conditions are also described. The characteristics of axlebox node of the running system with detailing the components is presented The criteria including temperature, physico-chemical and performance of bearings and axleboxes of traction vehicles are also presented. This article was developed within the research and development project No. 10 00 4806 entitled. "Microprocessor diagnostic system of the main systems of traction rail vehicle taking into account the current assessment and prediction of conditions" financed from the budget of the Ministry of Science and Higher Education.
Źródło:
Rail Vehicles/Pojazdy Szynowe; 2012, 2; 53-63
0138-0370
2719-9630
Pojawia się w:
Rail Vehicles/Pojazdy Szynowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kryteria wyboru dynamicznych modeli czynnikowych dla celów prognostycznych
Selection Criteria for Forecasting Dynamic Factor Models
Autorzy:
Acedański, Jan
Powiązania:
https://bibliotekanauki.pl/articles/589725.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Metody prognozowania
Modele autoregresji
Modele ekonometryczne
Prognozowanie makroekonomiczne
Macroeconomic forecasting, Forecasting methods, Autoregression models, Econometric models
Opis:
The paper compares three groups of methods used for best dynamic factor model selection for forecasting: modified information criteria, methods exclusively based on ex post forecasts analysis and mixed algorithms. It searches for the approach that delivers best out-of-sample forecasts according to mean square error measure. The analysis utilizes both Monte Carlo generated samples as well as real time series used for forecasting consumer inflation in Poland. Results show that best forecasts are obtained from the modified information criteria proposed by Groen and Kapetanios, whereas the methods that employ ex post forecasts from rolling windows usually give the worst predictions.
Źródło:
Studia Ekonomiczne; 2013, 124; 193-216
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sposoby badania trafności systemu prognoz sprzedaży w przedsiębiorstwie
Methods of Searching Accuracy of Sales Forecasting Systems in a Company
Autorzy:
Doszyń, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/589321.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Metody prognozowania
Prognozowanie sprzedaży
Prognozy ekonometryczne
Szeregi czasowe
Econometric forecasts
Forecasting methods
Sales forecasting
Time-series
Opis:
Celem artykułu jest zaprezentowanie metod monitorowania trafności systemu prognoz sprzedaży w przedsiębiorstwie. W pierwszej części scharakteryzowano system prognostyczny wspomagający zarządzanie w centrum magazynowo-dystrybucyjnym zlokalizowanym w województwie zachodniopomorskim. W dalszej kolejności opisano sposoby badania trafności prognoz, oparte na rozkładach wybranych błędów prognoz ex post. W związku z tym, iż w analizowanym przedsiębiorstwie wiele produktów charakteryzuje się niską częstością sprzedaży, zaproponowano błąd ex post, który może być stosowany w tego rodzaju przypadkach.
The purpose of this article was to present methods of monitoring the accuracy of the sales forecasts in the company. In the first part of the article prognostic system supporting management of the warehouse and distribution centre located in Western Pomerania has been characterized. Then methods of verifying predictions accuracy, based on the distributions of some ex-post forecast errors were described. Because of the fact that in analysed company sales frequency was low in case of many products, ex-post forecast error useful in such cases was proposed.
Źródło:
Studia Ekonomiczne; 2015, 241; 9-23
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies