Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mean square error (MSE)" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Some linear regression type ratio exponential estimators for estimating the population mean based on quartile deviation and deciles
Autorzy:
Prasad, Shakti
Powiązania:
https://bibliotekanauki.pl/articles/1059039.pdf
Data publikacji:
2020-12-04
Wydawca:
Główny Urząd Statystyczny
Tematy:
Bias
Mean square error (MSE)
Auxiliary variable
Relative Efficiency (%)
Opis:
This paper deals some linear regression type ratio exponential estimators for estimating the population mean using the known values of quartile deviation and deciles of an auxiliary variable in survey sampling. The expressions of the bias and the mean square error of the suggested estimators have been derived. It was compared with the usual mean, usual ratio (Cochran (1977)), Kadilar and Cingi (2004, 2006) and Subzar et al. (2017) estimators. After comparison, the condition which makes the suggested estimators more efficient than others is found. To verify the theoretical results, numerical results are performed on two natural population data sets.
Źródło:
Statistics in Transition new series; 2020, 21, 5; 85-98
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A comparative study of a class of direct estimators for domain mean with a direct ratio estimator for domain mean using auxiliary character
Autorzy:
Khare, Brij Behari
Ashutosh, Ashutosh
Rai, Piyush Kant
Powiązania:
https://bibliotekanauki.pl/articles/1054559.pdf
Data publikacji:
2021-06-04
Wydawca:
Główny Urząd Statystyczny
Tematy:
domain
auxiliary character
direct ratio estimator
class of estimators
mean square error (MSE)
Opis:
Estimation techniques for a domain parameter play a very significant role in the theory of sample surveys. In the recent years many advanced methodologies have been developed for domain estimation. In particular, direct and synthetic estimators are applied for the estimation of domain mean in the government and private sectors under certain assumptions as to the size of the samples relating to particular domains. The findings demonstrate that the direct estimator fails to perform more efficiently as compared to the synthetic estimator when reliable units are not directly accessible in the studied domains. Moreover, due to the fact that small units belong to the sample of the studied domain, the direct estimator produces an unacceptably large standard error. In contrast, if a sufficient number of units are available in the studied domain, the direct estimator produces effective results. This paper presents the theoretical aspects of the proposed class of direct estimators for domain mean with the use of a single auxiliary character, compared with an existing direct ratio estimator for domain mean (given in section 3.2). In addition, an empirical study has been provided to support the validity of the proposed estimators. The findings prove that the proposed estimators outperform the direct ratio estimator for domain mean using a single auxiliary character in the case of two studied populations and their analysed domains considered from Sarndal et al. (1992).
Źródło:
Statistics in Transition new series; 2021, 22, 2; 189-200
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative Analysis of Channel Estimation Techniques in SISO, MISO and MIMO Systems
Autorzy:
Obinna, O.
Kennedy, O.
Osemwegie, O.
Nsikan, N.
Powiązania:
https://bibliotekanauki.pl/articles/226922.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
multiple-input multiple-output (MIMO)
multiple-input single output (MISO)
single input single output (SISO)
least square estimation (L.S)
minimum mean squared error (MMSE) estimators
mean squared error (MSE)
bit error rate (BER)
Opis:
The ever-growing need for high data rate, bandwidth efficiency, reliability, less complexity and less power consumption in our communication systems is on the increase. Modern techniques have to be developed and put in place to meet these requirements. Research has shown, that compared to conventional Single Input Single Output (SISO) systems, Multiple-Input Single Output (MISO), and Multiple-Input Multiple-Output (MIMO) can actually increase the data rate of a communication system, without actually requiring more transmit power or bandwidth. This paper aims at the investigation of the existing channel estimation techniques. Based on the pilot arrangement, the block type and comb type are compared, employing the Least Square estimation (L.S) and Minimum Mean Squared Error (MMSE) estimators. Pilots occupy bandwidth, minimizing the number of pilots used to estimate the channel, in order to allow for more bandwidth utilization for data transmission, without compromising the accuracy of the estimates is taken into consideration. Various channel interpolation techniques and pilot-data insertion ratio are investigated, simulated and compared, to determine the best performance technique with less complexity and minimum power consumption. As performance measures, the Mean Squared Error (MSE) and Bit Error Rate (BER) as a function of Signal to Noise power Ratio (SNR) of the different channel estimation techniques are plotted, in order to identify the technique with the most optimal performance. The complexity and energy efficiency of the techniques are also investigated. The system modelling and simulations are carried out using Matlab simulation package. The MIMO gives the optimum performance, followed by the MISO and SISO. This is as a result of the diversity and multiplexing gain experienced in the multiple antenna techniques using the STBC.
Źródło:
International Journal of Electronics and Telecommunications; 2017, 63, 3; 299-304
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modified Block Sparse Bayesian Learning-Based Compressive Sensing Scheme For EEG Signals
Autorzy:
Upadhyaya, Vivek
Salim, Mohammad
Powiązania:
https://bibliotekanauki.pl/articles/1844532.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
compressive sensing
CS
mean square error
MSE
structural similarity index measure
SSIM
electroencephalogram
EEG
digital signal processing
DSP
block sparse Bayesian learning
BSBL
Opis:
Advancement in medical technology creates some issues related to data transmission as well as storage. In real-time processing, it is too tedious to limit the flow of data as it may reduce the meaningful information too. So, an efficient technique is required to compress the data. This problem arises in Magnetic Resonance Imaging (MRI), Electrocardiogram (ECG), Electroencephalogram (EEG), and other medical signal processing domains. In this paper, we demonstrate Block Sparse Bayesian Learning (BSBL) based compressive sensing technique on an Electroencephalogram (EEG) signal. The efficiency of the algorithm is described using the Mean Square Error (MSE) and Structural Similarity Index Measure (SSIM) value. Apart from this analysis we also use different combinations of sensing matrices too, to demonstrate the effect of sensing matrices on MSE and SSIM value. And here we got that the exponential and chi-square random matrices as a sensing matrix are showing a significant change in the value of MSE and SSIM. So, in real-time body sensor networks, this scheme will contribute a significant reduction in power requirement due to its data compression ability as well as it will reduce the cost and the size of the device used for real-time monitoring.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 3; 331-336
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies