- Tytuł:
-
Neural networks type MLP in the process of identification of chosen varieties of maize
Sieci neuronowe typu MLP w procesie identyfikacji wybranych odmian kukurydzy - Autorzy:
-
Boniecki, P.
Nowakowski, K.
Tomczak, R. J. - Powiązania:
- https://bibliotekanauki.pl/articles/334052.pdf
- Data publikacji:
- 2011
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
- Tematy:
-
sieci neuronowe typu MLP
identyfikacja
odmiana
kukurydza
neural networks type MLP
identification
maize
variety - Opis:
-
During the adaptation process of the weights vector that occurs in the iterative presentation of the teaching vector, the MLP type artificial neural network (Multi Layer Perception) attempts to learn the structure of the data. Such a network can learn to recognize aggregates of input data occurring in the input data set regardless of the assumed criteria of similarity and the quantity of the data explored. The MLP type neural network can be also used to detect regularities occurring in the obtained graphic empirical data. The neuronal image analysis is then a new field of digital processing of signals. It is possible to use it to identity chosen objects given in the form of bit map. If at the network input, a new unknown case appears which the network is unable to recognize, it means that it is different from all the classes known previously. The MLP type artificial neural network taught in this way can serve as a detector signaling the appearance of a widely understood novelty. Such a network can also look for similarities between the known data and the noisy data. In this way, it is able to identity fragments of images presented in photographs of e.g. maize grain. The purpose of the research was to use the MLP neural networks in the process of identification of chosen varieties of maize applying the image analysis method. The neuronal classification shapes of grains was performed with the use of the Johan Gielis super formula.
Podczas iteracyjnej korekcji wektora wag, zachodzącej w trakcie procesu uczenia sieci neuronowej typu MLP (perceptron wielowarstwowy), następuje adaptacja (przez tworzony model neuronowy) wiedzy zawartej w strukturze analizowanych danych. W badaniach prowadzonych w dyscyplinie inżynieria rolnicza, istotne znaczenie ma proces pozyskiwania informacji zakodowanej w postaci graficznej, np. w formie zdjąć cyfrowych. Często zmiennymi reprezentatywnymi, które w sposób wystarczający charakteryzują zobrazowany obiekt, są wybrane współczynniki kształtu. Celem badań było wykorzystanie sieci neuronowych typu MLP w procesie identyfikacji wybranych odmian kukurydzy z wykorzystaniem metod analizy obrazu. Wykorzystana metoda klasyfikacji polegała na rozpoznawaniu różnic kształtów analizowanych obiektów. Neuronowa identyfikacja została wykonana z użyciem super formuły Johana Gielisa. - Źródło:
-
Journal of Research and Applications in Agricultural Engineering; 2011, 56, 1; 11-13
1642-686X
2719-423X - Pojawia się w:
- Journal of Research and Applications in Agricultural Engineering
- Dostawca treści:
- Biblioteka Nauki