Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "MGARCH processes" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
A Long-Run Relationship between Daily Prices on Two Markets: The Bayesian VAR(2)–MSF-SBEKK Model
Autorzy:
Osiewalski, Krzysztof
Osiewalski, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/483271.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Bayesian econometrics
vector error correction model
hybrid MGARCH-MSV processes
financial markets
commodity markets
Opis:
We develop a fully Bayesian framework for analysis and comparison of two competing approaches to modelling daily prices on different markets. The first approach, prevailing in financial econometrics, amounts to assuming that logarithms of prices behave like a multivariate random walk; this approach describes logarithmic returns most often by the VAR(1) model with MGARCH (or sometimes MSV) disturbances. In the second approach, considered here, it is assumed that daily price levels are linked together and, thus, the error correction term is added to the usual VAR(1)–MGARCH or VAR(1)–MSV model for logarithmic returns, leading to a reduced rank VAR(2) specification for logarithms of prices. The model proposed in the paper uses a hybrid MSVMGARCH structure for VAR(2) disturbances. In order to keep cointegration modelling as simple as possible, we restrict to the case of two prices representing two different markets. The aim of the paper is to show how to check if a long-run relationship between daily prices exists and whether taking it into account influences our inference on volatility and short-run relations between returns on different markets. In the empirical example the daily values of the S&P500 index and the WTI oil price in the period 19.12.2005 – 30.09.2011 are jointly modelled. It is shown that, although the logarithms of the values of S&P500 and WTI oil price seem to be cointegrated, neglecting the error correction term leads to practically the same conclusions on volatility and conditional correlation as keeping it in the model.
Źródło:
Central European Journal of Economic Modelling and Econometrics; 2013, 5, 1; 65-83
2080-0886
2080-119X
Pojawia się w:
Central European Journal of Economic Modelling and Econometrics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid MSV-MGARCH Models - General Remarks and the GMSF-SBEKK Specification
Autorzy:
Osiewalski, Jacek
Osiewalski, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2076468.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Bayesian econometrics
multivariate volatility models
MGARCH processes
MSV processes
financial markets
commodity markets
Opis:
The first so-called hybrid MSV-MGARCH models were characterized by the conditional covariance matrix that was a product of a univariate latent process and a matrix with a simple MGARCH structure (Engle’s DCC or scalar BEKK). The aim was to parsimoniously describe volatility of a large group of assets. The proposed hybrid models, similarly as pure MSV specifications (and other models based on latent processes), required the Bayesian approach equipped with efficient MCMC simulation tools. The numerical effort has payed – the hybrid models seem particularly useful due to their good fit and ability to jointly cope with large portfolios. In particular, the simplest hybrid, now called the MSF-SBEKK model, has been successfully used in many applications. However, one latent process may be insufficient in the case of a highly heterogeneous portfolio. Thus, in this study we discuss a general hybrid MSV-MGARCH model structure, showing its basic characteristics that explain greater flexibility of such hybrid structure with respect to the corresponding MGARCH class. From the empirical perspective, we advocate the GMSF-SBEKK specification, which uses as many latent processes as there are relatively homogeneous groups of assets. We present full Bayesian inference for such models, with the use of an efficient MCMC simulation strategy. The approach is used to jointly model volatility on very different markets. Joint modelling is formally compared to individual modelling of volatility on each market.
Źródło:
Central European Journal of Economic Modelling and Econometrics; 2016, 4; 241-271
2080-0886
2080-119X
Pojawia się w:
Central European Journal of Economic Modelling and Econometrics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Missing observations in daily returns - Bayesian inference within the MSF-SBEKK model
Autorzy:
Osiewalski, Krzysztof
Osiewalski, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/483257.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Bayesian econometrics
hybrid MGARCH-MSV processes
forecasting unavailable data
financial markets
commodity markets
Opis:
Often daily prices on different markets are not all observable. The question is whether we should exclude from modelling the days with prices not available on all markets (thus loosing some information and implicitly modifying the time axis) or somehow complete the missing (non-existing) prices. In order to compare the effects of each of two ways of dealing with partly available data, one should consider formal procedures of replacing the unavailable prices by their appropriate predictions. We propose a fully Bayesian approach, which amounts to obtaining the marginal posterior (or predictive) distribution for any particular day in question. This procedure takes into account uncertainty on missing prices and can be used to check validity of informal ways of "completing" the data (e.g. linear interpolation). We use the MSF-SBEKK structure, the simplest among hybrid MSV-MGARCH models, which can parsimoniously describe volatility of a large number of prices or indices. In order to conduct Bayesian inference, the conditional posterior distributions for all unknown quantities are derived and the Gibbs sampler (with Metropolis-Hastings steps) is designed. Our approach is applied to daily prices from six different financial and commodity markets; the data cover the period from December 21, 2005 till September 30, 2011, so the time of the global financial crisis is included. We compare inferences (on individual parameters, conditional correlation coefficients and volatilities), obtained in the cases where unavailable observations are either deleted or forecasted.
Źródło:
Central European Journal of Economic Modelling and Econometrics; 2012, 4, 3; 169-197
2080-0886
2080-119X
Pojawia się w:
Central European Journal of Economic Modelling and Econometrics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies