Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Levenberg-Marquardt learning" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Fast computational approach to the Levenberg-Marquardt algorithm for training feedforward neural networks
Autorzy:
Bilski, Jarosław
Smoląg, Jacek
Kowalczyk, Bartosz
Grzanek, Konrad
Izonin, Ivan
Powiązania:
https://bibliotekanauki.pl/articles/2201329.pdf
Data publikacji:
2023
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
feed-forward neural network
neural network learning algorithm
Levenberg-Marquardt algorithm
QR decomposition
Givens rotation
Opis:
This paper presents a parallel approach to the Levenberg-Marquardt algorithm (LM). The use of the Levenberg-Marquardt algorithm to train neural networks is associated with significant computational complexity, and thus computation time. As a result, when the neural network has a big number of weights, the algorithm becomes practically ineffective. This article presents a new parallel approach to the computations in Levenberg-Marquardt neural network learning algorithm. The proposed solution is based on vector instructions to effectively reduce the high computational time of this algorithm. The new approach was tested on several examples involving the problems of classification and function approximation, and next it was compared with a classical computational method. The article presents in detail the idea of parallel neural network computations and shows the obtained acceleration for different problems.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2023, 13, 2; 45--61
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Local Levenberg-Marquardt algorithm for learning feedforwad neural networks
Autorzy:
Bilski, Jarosław
Kowalczyk, Bartosz
Marchlewska, Alina
Zurada, Jacek M.
Powiązania:
https://bibliotekanauki.pl/articles/1837415.pdf
Data publikacji:
2020
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
feed-forward neural network
neural network learning algorithm
optimization problem
Levenberg-Marquardt algorithm
QR decomposition
Givens rotation
Opis:
This paper presents a local modification of the Levenberg-Marquardt algorithm (LM). First, the mathematical basics of the classic LM method are shown. The classic LM algorithm is very efficient for learning small neural networks. For bigger neural networks, whose computational complexity grows significantly, it makes this method practically inefficient. In order to overcome this limitation, local modification of the LM is introduced in this paper. The main goal of this paper is to develop a more complexity efficient modification of the LM method by using a local computation. The introduced modification has been tested on the following benchmarks: the function approximation and classification problems. The obtained results have been compared to the classic LM method performance. The paper shows that the local modification of the LM method significantly improves the algorithm’s performance for bigger networks. Several possible proposals for future works are suggested.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2020, 10, 4; 299-316
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recurrent neural identification and control of a continuous bioprocess via first and second order learning
Autorzy:
Baruch, I.
Mariaca-Gaspar, C. R.
Powiązania:
https://bibliotekanauki.pl/articles/385133.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
backpropagation learning
direct adaptive neural control
indirect adaptive sliding mode control
Kalman filter recurrent neural network identifier
Levenberg-Marquardt learning
Opis:
This paper applies a new Kalman Filter Recurrent Neural Network (KFRNN) topology and a recursive Levenberg-Mar quardt (L-M) learning algorithm capable to estimate para meters and states of highly nonlinear unknown plant in noisy environment. The proposed KFRNN identifier, learned by the Backpropagation and L-M learning algorithm, was incorporated in a direct and indirect adaptive neural con trol schemes. The proposed control schemes were applied for real-time recurrent neural identification and control of a continuous stirred tank bioreactor model, where fast convergence, noise filtering and low mean squared error of reference tracking were achieved.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2010, 4, 4; 37-52
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies