Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Leibniz operator" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Categorical Abstract Algebraic Logic: Referential π-Institutions
Autorzy:
Voutsadakis, George
Powiązania:
https://bibliotekanauki.pl/articles/749990.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Referential Logics
Selfextensional Logics
Leibniz operator
Tarski operator
Suszko operator
π-institutions
Opis:
Wójcicki introduced in the late 1970s the concept of a referential semantics for propositional logics. Referential semantics incorporate features of the Kripke possible world semantics for modal logics into the realm of algebraic and matrix semantics of arbitrary sentential logics. A well-known theorem of Wójcicki asserts that a logic has a referential semantics if and only if it is selfextensional. Referential semantics was subsequently studied in detail by Malinowski and the concept of selfextensionality has played, more recently, an important role in the field of abstract algebraic logic in connection with the operator approach to algebraizability. We introduce and review some of the basic definitions and results pertaining to the referential semantics of π-institutions, abstracting corresponding results from the realm of propositional logics.
Źródło:
Bulletin of the Section of Logic; 2015, 44, 1-2
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The gauge-natural bilinear brackets on couples of linear vector fields and linear p-forms
Autorzy:
Kurek, Jan
Mikulski, Włodzimierz M.
Powiązania:
https://bibliotekanauki.pl/articles/2078946.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Natural operator
linear vector field
linear p-form
Jacobi identity in Leibniz form
Opis:
We give complete description of all gauge-natural bilinear operators A transforming pairs of couples of linear vector fields and linear p-forms on a vector bundle E into couples of linear vector fields and linear p-forms on E and satisfying the Jacobi identity in Leibniz form.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2021, 75, 2; 74-92
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the twisted Dorfman-Courant like brackets
Autorzy:
Mikulski, Włodzimierz M.
Powiązania:
https://bibliotekanauki.pl/articles/1397340.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
natural operator
linear vector field
linear form
(twisted) Dorfman-Courant bracket
Jacobi identity in Leibniz form
Opis:
There are completely described all [formula]-gauge-natural operators C which, like to the Dorfman-Courant bracket, send closed linear 3-forms [formula]on a smooth (C ∞) vector bundle E into R-bilinear operators [formula] transforming pairs of linear sections of [formula] into linear sections of [formula]. Then all such C which also, like to the twisted Dorfman-Courant bracket, satisfy both some “restricted” condition and the Jacobi identity in Leibniz form are extracted.
Źródło:
Opuscula Mathematica; 2020, 40, 6; 703-723
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the gauge-natural operators similar to the twisted Dorfman-Courant bracket
Autorzy:
Mikulski, Włodzimierz M.
Powiązania:
https://bibliotekanauki.pl/articles/2050976.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
natural operator
linear vector field
linear form
twisted Dorfman-Courant bracket
the Jacobi identity in Leibniz form
Opis:
All $\mathcal{VB}_{m,n}$-gauge-natural operators $C$ sending linear 3-forms $H \in \Gamma_{E}^{l}(\wedge^{3}T*E)$ on a smooth $\mathcal{C}^{\infty}$ vector bundle $E$ into $\mathbf{R}$-bilinear operators $$C_{H} : \Gamma_{E}^{l}(TE \oplus T* E) \times \Gamma_{E}^{l}(TE \oplus T* E) \rightarrow \Gamma_{E}^{l} (TE \oplus T* E)$$ transforming pairs of linear sections of $(TE \oplus T* E) \rightarrow E$ into linear sections of $(TE \oplus T* E) \rightarrow E$ are completely described. The complete descriptions is given of all generalized twisted Dorfman-Courant brackets C (i.e. C as above such that $C_{0}$ is the Dorfman-Courant bracket) satisfying the Jacobi identity for closed linear 3-forms $H$ . An interesting natural characterization of the (usual) twisted Dorfman-Courant bracket is presented.
Źródło:
Opuscula Mathematica; 2021, 41, 2; 205-226
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Leibniz congruences
Autorzy:
Font, Josep
Powiązania:
https://bibliotekanauki.pl/articles/1361077.pdf
Data publikacji:
1993
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
deductive system
protoalgebraic logic
Gentzen calculus
closure operator
abstract logic
algebraizable logic
Leibniz congruence
selfextensional logic
logical matrices
algebraic logic
Opis:
The aim of this paper is to discuss the motivation for a new general algebraic semantics for deductive systems, to introduce it, and to present an outline of its main features. Some tools from the theory of abstract logics are also introduced, and two classifications of deductive systems are analysed: one is based on the behaviour of the Leibniz congruence (the maximum congruence of a logical matrix) and the other on the behaviour of the Frege operator (which associates to every theory the interderivability relation modulo the theory). For protoalgebraic deductive systems the class of algebras associated in general turns out to be the class of algebra reducts of reduced matrices, which is the algebraic counterpart usually considered for this large class of deductive systems; but in the general case the new class of algebras shows a better behaviour.
Źródło:
Banach Center Publications; 1993, 28, 1; 17-36
0137-6934
Pojawia się w:
Banach Center Publications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fourier-like methods for equations with separable variables
Autorzy:
Przeworska-Rolewicz, Danuta
Powiązania:
https://bibliotekanauki.pl/articles/729392.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
algebraic analysis
commutative algebra with unit
Leibniz condition
logarithmic mapping
antilogarithmic mapping
right invertible operator
sine mapping
cosine mapping
initial value problem
boundary value problem
Fourier method
Opis:
It is well known that a power of a right invertible operator is again right invertible, as well as a polynomial in a right invertible operator under appropriate assumptions. However, a linear combination of right invertible operators (in particular, their sum and/or difference) in general is not right invertible. It will be shown how to solve equations with linear combinations of right invertible operators in commutative algebras using properties of logarithmic and antilogarithmic mappings. The used method is, in a sense, a kind of the variables separation method. We shall obtain also an analogue of the classical Fourier method for partial differential equations. Note that the results concerning the Fourier method are proved under weaker assumptions than these obtained in [6] (cf. also [7, 8, 11]).
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2009, 29, 1; 19-42
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies