Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Lebesgue measurable" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Marczewski-Burstin-like characterizations of σ-algebras, ideals, and measurable functions
Autorzy:
Brown, Jack
Elalaoui-Talibi, Hussain
Powiązania:
https://bibliotekanauki.pl/articles/965993.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Baire property
Marczewski measurable
Lebesgue measurable
Opis:
ℒ denotes the Lebesgue measurable subsets of ℝ and $ℒ_0$ denotes the sets of Lebesgue measure 0. In 1914 Burstin showed that a set M ⊆ ℝ belongs to ℒ if and only if every perfect P ∈ ℒ\$ℒ_0$ has a perfect subset Q ∈ ℒ\$ℒ_0$ which is a subset of or misses M (a similar statement omitting "is a subset of or" characterizes $ℒ_0$). In 1935, Marczewski used similar language to define the σ-algebra (s) which we now call the "Marczewski measurable sets" and the σ-ideal $(s^0)$ which we call the "Marczewski null sets". M ∈ (s) if every perfect set P has a perfect subset Q which is a subset of or misses M. M ∈ $(s^0)$ if every perfect set P has a perfect subset Q which misses M. In this paper, it is shown that there is a collection G of $G_δ$ sets which can be used to give similar "Marczewski-Burstin-like" characterizations of the collections $B_w$ (sets with the Baire property in the wide sense) and FC (first category sets). It is shown that no collection of $F_σ$ sets can be used for this purpose. It is then shown that no collection of Borel sets can be used in a similar way to provide Marczewski-Burstin-like characterizations of $B_r$ (sets with the Baire property in the restricted sense) and AFC (always first category sets). The same is true for U (universally measurable sets) and $U_0$ (universal null sets). Marczewski-Burstin-like characterizations of the classes of measurable functions are also discussed.
Źródło:
Colloquium Mathematicum; 1999, 82, 2; 277-286
0010-1354
Pojawia się w:
Colloquium Mathematicum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vector series whose lacunary subseries converge
Autorzy:
Drewnowski, Lech
Labuda, Iwo
Powiązania:
https://bibliotekanauki.pl/articles/1206244.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
subseries convergence
lacunary subseries
zero-density subseries
lacunary convergence property
topological Riesz space of measurable functions
topological vector space of Bochner measurable functions
Lebesgue property
Levi property
copy of $c_0$
Opis:
The area of research of this paper goes back to a 1930 result of H. Auerbach showing that a scalar series is (absolutely) convergent if all its zero-density subseries converge. A series $∑_n x_n$ in a topological vector space X is called ℒ-convergent if each of its lacunary subseries $∑_k x_{n_k}$ (i.e. those with $n_{k+1} - n_k → ∞$) converges. The space X is said to have the Lacunary Convergence Property, or LCP, if every ℒ-convergent series in X is convergent; in fact, it is then subseries convergent. The Zero-Density Convergence Property, or ZCP, is defined similarly though of lesser importance here. It is shown that for every ℒ-convergent series the set of all its finite sums is metrically bounded; however, it need not be topologically bounded. Next, a space with the LCP contains no copy of the space $c_0$. The converse holds for Banach spaces and, more generally, sequentially complete locally pseudoconvex spaces. However, an F-lattice of measurable functions is constructed that has both the Lebesgue and Levi properties, and thus contains no copy of $c_0$, and, nonetheless, lacks the LCP. The main (and most difficult) result of the paper is that if a Banach space E contains no copy of $c_0$ and λ is a finite measure, then the Bochner space $L_0$ (λ,e) has the LCP. From this, with the help of some Orlicz-Pettis type theorems proved earlier by the authors, the LCP is deduced for a vast class of spaces of (scalar and vector) measurable functions that have the Lebesgue type property and are "metrically-boundedly sequentially closed" in the containing $L_0$ space. Analogous results about the convergence of ℒ-convergent positive series in topological Riesz spaces are also obtained. Finally, while the LCP implies the ZCP trivially, an example is given that the converse is false, in general.
Źródło:
Studia Mathematica; 2000, 138, 1; 53-80
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies