Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "L-curve" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Przykłady regularyzacji zadań wyznaczania współczynnika dyfuzji wilgoci i przejmowania masy w drewnie
Examples of regularization for tasks of determining moisture diffusivity and mass surface emission of wood
Autorzy:
Perkowski, Z.
Jeż, K.
Grygorowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/363028.pdf
Data publikacji:
2017
Wydawca:
Instytut Fizyki Budowli Katarzyna i Piotr Klemm
Tematy:
dyfuzja wilgoci
drewno
współczynnikowe zadanie odwrotne
regularyzacja Tichonowa
metoda L-curve
wood
coefficient inverse problem
Tichonov regularization
Tikhonov regularization
L-curve method
Opis:
W pracy rozważa się sposób wyznaczania współczynnika dyfuzji wilgoci i przejmowania masy drewna na podstawie pomiarów masy całkowitej próbek rejestrowanych w procesie niestacjonarnej sorpcji, gdzie oszacowania parametrów materiałowych dokonuje się na drodze minimalizacji sumy błędów kwadratowych pomiędzy wynikami pomiaru i obliczeń modelowych. W [9,12] pokazano, że szczególnie w przypadku wyrażenia współczynnika dyfuzji, jako nieliniowej funkcji zależnej od wilgotności materiału lub wystąpienia względnie dużych wartości współczynnika przejmowania masy w procesie dyfuzji zachodzącym wzdłuż włókien drewna, w zagadnieniach tego typu jednoznaczne określenie globalnego minimum funkcji celu może stać się bardzo utrudnione. W niniejszej pracy, jako sposób, który pozwala na skuteczną regularyzację omawianego, współczynnikowego zadania odwrotnego, wykorzystano metody Tichonowa i L-curve. Rozważania zilustrowano przykładami pomiarów prowadzonych na próbkach z drewna sosnowego, dębowego i lipowego, w przypadku, których, dzięki zastosowanemu podejściu, otrzymano znaczną poprawę jakości wyników.
In the paper, a method for determining the moisture diffusion coefficient and mass surface emission coefficient of wood is considered which employs measurements of total mass of samples recorded in a non-stationary sorption process where the estimation of the material parameters is realized by minimizing the sum of square errors between the measurement results and adopted calculation model. It was shown in [9,12] that in problems of this type, especially in the case of the expression of diffusion coefficient as a nonlinear function dependent on the moisture content or of a relatively large mass surface emission coefficient when diffusion process taking place along the wood fibres, unambiguous definition of the global minimum of the objective function can be very difficult. In this paper, as a way that allows for the effective regularization of this parametric inverse problem, Tikhonov method and L-curve method are used. The considerations are illustrated with examples of measurements conducted on the samples of pine, oak, and linden wood where, thanks to the used approach, one significantly improved quality of results.
Źródło:
Fizyka Budowli w Teorii i Praktyce; 2017, T. 9, nr 1, 1; 33-38
1734-4891
Pojawia się w:
Fizyka Budowli w Teorii i Praktyce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Regularization parameter selection in discrete ill-posed problems—The use of the U-curve
Autorzy:
Krawczyk-Stańdo, D.
Rudnicki, M.
Powiązania:
https://bibliotekanauki.pl/articles/929617.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
problem niewłaściwie postawiony
regularyzacja Tichonowa
parametr regularyzacji
ill-posed problems
Tikhonov regularization
regularization parameter
L-curve
U-curve
Opis:
To obtain smooth solutions to ill-posed problems, the standard Tikhonov regularization method is most often used. For the practical choice of the regularization parameter \alfa we can then employ the well-known L-curve criterion, based on the L-curve which is a plot of the norm of the regularized solution versus the norm of the corresponding residual for all valid regularization parameters. This paper proposes a new criterion for choosing the regularization parameter \alfa, based on the so-called U-curve. A comparison of the two methods made on numerical examples is additionally included.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2007, 17, 2; 157-164
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-ergodic probabilistic seismic hazard methodology using physics-based ground motion prediction: the case of LAquila, Italy - Part III Results and Discussion
Autorzy:
Aguirre, Jedidiah Joel
Rubino, Bruno
Vassallo, Maurizio
Di Giulio, Giuseppe
Visini, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/2035849.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska
Tematy:
non-ergodic probabilistic seismic hazard analysis
physics-based ground motion prediction
modified time-weakening friction law
peak ground acceleration
hazard curve
City of L’Aquila
analiza zagrożeń sejsmicznych
przewidywanie ruchu naziemnego
zmodyfikowane prawo tarcia
szczytowe przyspieszenie naziemne
krzywa zagrożenia
L'aquila
Opis:
A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-based ground motion prediction was proposed in this study to minimize the increasing uncertainties in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes due to the availability of data and the historical seismicity of the site. A total of 28 seismic sources were identified in this study located within a 100 km radius from the city. Fault properties such as geometry and location were obtained from the literature, while the fault occurrence rates were obtained using the FiSH Code. A modified time-weakening friction law was proposed to model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian Time Passage. Uncertainties in distances were characterized through probability mass functions, which were used to calculate the ground motion exceedance probabilities. The 1D elastodynamic equation coupled with the Hooke’s law was used to predict the peak ground acceleration (PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 100: Advancing Earth and Space Science (2019). The method proposed in this study predicts a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2020, 24, 2; 153-166
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-ergodic probabilistic seismic hazard methodology using physics-based ground motion prediction: the case of LAquila, Italy - Part I Theoretical background
Autorzy:
Aguirre, Jedidiah Joel
Rubino, Bruno
Vassallo, Maurizio
Di Giulio, Giuseppe
Visini, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/2035834.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska
Tematy:
non-ergodic probabilistic seismic hazard analysis
physics-based ground motion prediction
modified time-weakening friction law
peak ground acceleration
hazard curve
City of L’Aquila
analiza zagrożeń sejsmicznych
przewidywanie ruchu naziemnego
zmodyfikowane prawo tarcia
szczytowe przyspieszenie naziemne
krzywa zagrożenia
L'aquila
Opis:
A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-based ground motion prediction was proposed in this study to minimize the increasing uncertainties in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes due to the availability of data and the historical seismicity of the site. A total of 28 seismic sources were identified in this study located within a 100 km radius from the city. Fault properties such as geometry and location were obtained from the literature, while the fault occurrence rates were obtained using the FiSH Code. A modified time-weakening friction law was proposed to model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian Time Passage. Uncertainties in distances were characterized through probability mass functions, which were used to calculate the ground motion exceedance probabilities. The 1D elastodynamic equation coupled with the Hooke’s law was used to predict the peak ground acceleration (PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 100: Advancing Earth and Space Science (2019). The method proposed in this study predicts a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2020, 24, 2; 97-137
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-ergodic probabilistic seismic hazard methodology using physics-based ground motion prediction: the case of LAquila, Italy - Part II Methodology
Autorzy:
Aguirre, Jedidiah Joel
Rubino, Bruno
Vassallo, Maurizio
Di Giulio, Giuseppe
Visini, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/2035843.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska
Tematy:
non-ergodic probabilistic seismic hazard analysis
physics-based ground motion prediction
modified time-weakening friction law
peak ground acceleration
hazard curve
City of L’Aquila
analiza zagrożeń sejsmicznych
przewidywanie ruchu naziemnego
zmodyfikowane prawo tarcia
szczytowe przyspieszenie naziemne
krzywa zagrożenia
L'aquila
Opis:
A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-based ground motion prediction was proposed in this study to minimize the increasing uncertainties in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes due to the availability of data and the historical seismicity of the site. A total of 28 seismic sources were identified in this study located within a 100 km radius from the city. Fault properties such as geometry and location were obtained from the literature, while the fault occurrence rates were obtained using the FiSH Code. A modified time-weakening friction law was proposed to model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian Time Passage. Uncertainties in distances were characterized through probability mass functions, which were used to calculate the ground motion exceedance probabilities. The 1D elastodynamic equation coupled with the Hooke’s law was used to predict the peak ground acceleration (PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 100: Advancing Earth and Space Science (2019). The method proposed in this study predicts a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2020, 24, 2; 137-153
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-ergodic probabilistic seismic hazard methodology using physics-based ground motion prediction: the case of LAquila, Italy - Appendices
Autorzy:
Aguirre, Jedidiah Joel
Rubino, Bruno
Vassallo, Maurizio
Di Giulio, Giuseppe
Visini, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/2035851.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska
Tematy:
non-ergodic probabilistic seismic hazard analysis
physics-based ground motion prediction
modified time-weakening friction law
peak ground acceleration
hazard curve
City of L’Aquila
analiza zagrożeń sejsmicznych
przewidywanie ruchu naziemnego
zmodyfikowane prawo tarcia
szczytowe przyspieszenie naziemne
krzywa zagrożenia
L'aquila
Opis:
A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-based ground motion prediction was proposed in this study to minimize the increasing uncertainties in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes due to the availability of data and the historical seismicity of the site. A total of 28 seismic sources were identified in this study located within a 100 km radius from the city. Fault properties such as geometry and location were obtained from the literature, while the fault occurrence rates were obtained using the FiSH Code. A modified time-weakening friction law was proposed to model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian Time Passage. Uncertainties in distances were characterized through probability mass functions, which were used to calculate the ground motion exceedance probabilities. The 1D elastodynamic equation coupled with the Hooke’s law was used to predict the peak ground acceleration (PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 100: Advancing Earth and Space Science (2019). The method proposed in this study predicts a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2020, 24, 2; 166-182
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-ergodic probabilistic seismic hazard methodology using physics-based ground motion prediction: the case of LAquila, Italy
Autorzy:
Aguirre, Jedidiah Joel
Rubino, Bruno
Vassallo, Maurizio
Di Giulio, Giuseppe
Visini, Francesco
Powiązania:
https://bibliotekanauki.pl/articles/1950802.pdf
Data publikacji:
2022-02-05
Wydawca:
Politechnika Gdańska
Tematy:
non-ergodic probabilistic seismic hazard analysis
physics-based ground motionprediction
modified time-weakening friction law
peak ground acceleration
hazard curve
City of L’Aquila
analiza zagrożeń sejsmicznych
przewidywanie ruchu naziemnego
zmodyfikowane prawo tarcia
szczytowe przyspieszenie naziemne
krzywa zagrożenia
L'aquila
Opis:
A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-based ground motion prediction was proposed in this study to minimize the increasing uncertainties in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes due to the availability of data and the historical seismicity of the site. A total of 28 seismic sources were identified in this study located within a 100 km radius from the city. Fault properties such as geometry and location were obtained from the literature, while the fault occurrence rates were obtained using the FiSH Code. A modified time-weakening friction law was proposed to model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian Time Passage. Uncertainties in distances were characterized through probability mass functions, which were used to calculate the ground motion exceedance probabilities. The 1D elastodynamic equation coupled with the Hooke’s law was used to predict the peak ground acceleration (PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 100: Advancing Earth and Space Science (2019). The method proposed in this study predicts a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2020, 24, 2; 97-185
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies