Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kohonen map" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Anomalous and traditional diffusion modelling in SOM learning
Autorzy:
Hrebik, Radek
Kukal, Jaromir
Powiązania:
https://bibliotekanauki.pl/articles/949793.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
self organization
Kohonen map
diffusion learning
anomalous diffusion
SOM
Opis:
The traditional self organizing map (SOM) is learned by Kohonen learning. The main disadvantage of this approach is in epoch based learning when the radius and rate of learning are decreasing functions of epoch index. The aim of study is to demonstrate advantages of diffusive learning in single epoch learning and other cases for both traditional and anomalous diffusion models. We also discuss the differences between traditional and anomalous learning in models and in quality of obtained SOM. The anomalous diffusion model leads to less accurate SOM which is in accordance to biological assumptions of normal diffusive processes in living nervous system. But the traditional Kohonen learning has been overperformed by novel diffusive learning approaches.
Źródło:
Archives of Control Sciences; 2019, 29, 4; 699-717
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting Competitive Swimming Performance
Autorzy:
Wilk, Robert
Fidos- Czuba, Olga
Rutkowski, Łukasz
Kozłowski, Krzysztof
Wiśniewski, Piotr
Maszczyk, Adam
Stanula, Arkadiusz
Roczniok, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1055083.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Szczeciński. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego
Tematy:
Kohonen feature map
regression
sports selection
swimming performance
Opis:
The aim of this study was to present the results of analyses conducted by means of complementary analytic tools in order to verify their efficacy and the hypothesis that Kohonen’s neural models may be applied in the classification process of swimmers. A group of 40 swimmers, aged 23 ±5 years took part in this research. For the purpose of verification of usefulness of Kohonen’s neural models, statistical analyses were carried out on the basis of results of the independent variables (physiological and physical profiles, specific tests in the water). In predicting the value of variables measured with the so called strong scale regression models, numerous variables were used. The construction of such models required strict determination of the endogenous variable (Y – results for swim distances of 200 m crawl), as well as the proper choice of variables in explaining the study’s phenomenon. The optimum choice of explanatory variables for the Kohonen’s networks was made on the grounds of regression analysis. During statistical analysis of the gathered material neural networks were used: Kohonen’s feature maps (data mining analysis). The obtained model has the form of a topological map, where certain areas can be separated, and the map constructed in this way can be used in the assessment of candidates for sports training.
Źródło:
Central European Journal of Sport Sciences and Medicine; 2015, 9, 1; 105-112
2300-9705
2353-2807
Pojawia się w:
Central European Journal of Sport Sciences and Medicine
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie samoorganizujących się map cech w diagnostyce silników o zapłonie samoczynnym
Application of self-organizing maps of characteristics in the diagnostics of self-ignition engines
Autorzy:
Klimkiewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/287341.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
silnik o zapłonie samoczynnym
diagnostyka
mapa cech
sieć Kohonena
diesel engine
diagnostics
self-organizing map
Kohonen map
Opis:
Wykorzystano właściwości samoorganizujących się map cech w wykrywaniu uszkodzeń silników z zapłonem samoczynnym. Zbudowano model, w którym zmiennymi wejściowymi są symptomy zaobserwowane przez użytkownika wskazujące na niewłaściwą pracę silnika oraz sprawdzenia i pomiary wykonane przez mechanika. Za pomocą mapy topologicznej zlokalizowano podobne skupienia przypadków. Neuronom radialnym mapy nadano etykiety zgodne z nazwami mogących się pojawić usterek.
The researchers made use of self-organizing properties of maps of characteristics in detecting defects of self-ignition engines. A model was developed with the following input variables: the symptoms observed by user that indicate abnormal engine work, and checks and measurements carried out by a mechanic. Similar concentrations of clusters were located using a topological map. Radial neurons in the map were marked with labels consistent with names of defects, which may possibly occur.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 7(105), 7(105); 101-108
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowej Kohonena do wizualizacji danych MPG
Use of Kohonen neural network in MPG data visualisation
Autorzy:
Oszutowska-Mazurek, D. A.
Powiązania:
https://bibliotekanauki.pl/articles/135818.pdf
Data publikacji:
2016
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
sieć neuronowa Kohonena
samoorganizujące się mapy
SOM
wizualizacja danych
dane MPG
Kohonen neural network
self organizing map
Opis:
Wstęp i cel: Zastosowanie sieci neuronowych Kohonena zapewnia zmniejszenie wielowymiarowości danych. Wizualizacja w postaci map samoorganizujących się (SOM) jest użytecznym narzędziem do wstępnego kastrowania (grupowania) danych. Materiał i metody: Wizualizację przeprowadzona dla rzeczywistych danych, udostępnionych przez uniwersytet w Kalifornii za pomocą oprogramowania SNNS v.4.3. Głównym celem pracy jest zastosowanie sieci neuronowych Kohonena zapewniające zmniejszenie wielowymiarowości danych. Wyniki: Otrzymano wizualizacje danych wskazujące jednoznacznie na dodatnie i ujemne korelacje danych MPG. Wniosek: Mapy samoorganizujące się mogą być dedykowane wizualizacji danych wielowymiarowych jednak wyniki zależą od sposobu mapowania danych wejściowych, zwłaszcza o charakterze jakościowym, nawet jeśli stosowana jest normalizacja każdego z parametrów.
Introduction and aim: The use of Kohonen neural network ensures the decrease of data multidimensionality. Visualisation called Self organized maps is useful tool for preliminary data clustering. Material and methods: The visualisation of real data set was obtained with the use of program SNNS v.4.3 for real dataset from California University. The main aim of this paper is the use of Kohonen neural network to ensure the reduction of multidimensional data. Results: Obtained visualisations of data indicate unambiguously positive and negative correlations for MPG data Conclusion: Self organising maps could be dedicated to multidimensional data visualisation and preliminary quality assessment, but the results depend on the mapping method of input data, especially quantity type, even if normalisation of every parameter is provided.
Źródło:
Problemy Nauk Stosowanych; 2016, 4; 19-30
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe ANN : sieci Kohonena
Artificial neural networks (ANN) : Kohonen networks
Autorzy:
Iljaszewicz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/131981.pdf
Data publikacji:
2018
Wydawca:
Wrocławska Wyższa Szkoła Informatyki Stosowanej Horyzont
Tematy:
Sieci Kohonena
sieci neuronowe
mapa samoorganizująca
SOM
WEBSOM
Kohonen networks
artificial neural networks
ANN
Self Organizing Map
Opis:
Artykuł omawia sztuczne sieci neuronowe (ang. ANN- Artificial neural networks). Jedną z odmian są sieci Kohonena zwane Mapą Samoorganizującą (ang. SOM – Self Organizing Map) realizują one proces uczenia się sieci neuronowych samodzielnie tzn. rozpoznają relacje występujące w skupieniach poprzez wykrycie wewnętrznej struktury i kategoryzują je w procesie samouczenia. SOM służy do uformowania odwzorowania z przestrzeni wielowymiarowej do przestrzeni jednowymiarowej lub dwuwymiarowej. Główną cechą SOM jest to, że tworzy on nieliniową projekcję wielowymiarową kolektora danych na regularnej, niskowymiarowej (zwykle 2D) sieci. Na wyświetlaczu klastrowanie przestrzeni danych, jak również relacje metryczno-topologiczne elementów danych, są wyraźnie widoczne. Jeśli elementy danych są wektorami, składniki, których są zmiennymi z określone znaczenie, takie jak deskryptory danych statystycznych lub pomiary, które opisują proces, siatka SOM może być wykorzystana, jako podstawa, na której może znajdować się każda zmienna wyświetlane osobno przy użyciu kodowania na poziomie szarości lub pseudo koloru. Ten rodzaj projekcji został uznany za bardzo przydatny do zrozumienia wzajemnych zależności między zmiennymi, a także strukturami zbioru danych.
The article discusses artificial neural networks (ANN). One of the varieties is the Kohonen network, called the Self Organizing Map (SOM), that perform the learning process of neural networks independently, i.e. they recognize relationships occurring in clusters by detecting an internal structure and categorizing them in the process of self-learning. SOM is used to form mapping from a multidimensional space to a one-dimensional or two-dimensional space. The main feature of SOM is that it creates a non-linear multi-dimensional projection of a data collector on a regular, low-dimensional (usually 2D) network. On the display, data space clustering as well as metric-topological relations of data elements are clearly visible. If the data elements are vectors, the components of which are variables with defined meanings, such as statistical data descriptors or measurements that describe the process, the SOM grid can be used as a basis on which each variable can be displayed separately using gray or pseudo-color coding. This type of projection has been found to be very useful for understanding the interrelationships between variables as well as data set structures.
Źródło:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka; 2018, 8, 1; 34-39
2082-9892
Pojawia się w:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pulse shape discrimination of neutrons and gamma rays using kohonen artificial neural networks
Autorzy:
Tambouratzis, T.
Chernikova, D.
Pzsit, I.
Powiązania:
https://bibliotekanauki.pl/articles/91759.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
shape
neutron
discrimination
gamma rays
Kohonen artificial neural networks
ANNs
linear vector quantisation
LVQ
self-organizing map
SOM
pulse shape discrimination
PSD
Opis:
The potential of two Kohonen artificial neural networks (ANNs) - linear vector quantisation (LVQ) and the self organising map (SOM) - is explored for pulse shape discrimination (PSD), i.e. for distinguishing between neutrons (n’s) and gamma rays (’s). The effect that (a) the energy level, and (b) the relative size of the training and test sets, have on identification accuracy is also evaluated on the given PSD dataset. The two Kohonen ANNs demonstrate complementary discrimination ability on the training and test sets: while the LVQ is consistently more accurate on classifying the training set, the SOM exhibits higher n/ identification rates when classifying new patterns regardless of the proportion of training and test set patterns at the different energy levels; the average time for decision making equals ˜100 μs in the case of the LVQ and ˜450 μs in the case of the SOM.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2013, 3, 2; 77-88
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe Kohonena jako narzędzie w taksonomii paleontologicznej - metodyka oraz zastosowanie na przykładzie późnokredowych belemnitów
Artificial Kohonen neural networks as a tool in paleontological taxonomy - an introduction and application to Late Cretaceous belemnites
Autorzy:
Remin, Z.
Powiązania:
https://bibliotekanauki.pl/articles/2074559.pdf
Data publikacji:
2008
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
paleontologia
sztuczna inteligencja
sieci neuronowe Kohonena
samoorganizujących się sieci Kohonena
klasyfikacja
belemnity
górna kreda
paleontology
artificial intelligence
artificial neural networks
Kohonen neural networks
self-organizing map
classification
belemnites
Upper Cretaceous
Opis:
Artificial neural networks (ANNs), the computer software or systems that are able to "learn" on the basis of previously collected input data sets are proposed here as a new useful tool in paleontological modeling. Initially ANNs were designed to imitate the structure and function of natural neural systems such as the human brain. They are commonly used in many natural researches such as physics, geophysics, chemistry, biology, applied ecology etc. Special emphasis is put on the Kohonen self-organizing mapping algorithm, used in unsupervised networks for ordination purposes. The application of ANNs for paleontology is exemplified by study of Late Cretaceous belemnites. The Kohonen networks objectively subdivided the belemnite material] ~ 750 specimens) into consistent groups that could be treated as monospecific. The possibility of transferring these results to the language of classical statistics is also presented. Further development and possibility of use of ANNs in various areas of paleontology, paleobiology and paleoecology is briefly discussed.
Źródło:
Przegląd Geologiczny; 2008, 56, 1; 58-66
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies