- Tytuł:
- On discontinuous quasi-variational inequalities
- Autorzy:
-
Chu, Liang-Ju
Lin, Ching-Yang - Powiązania:
- https://bibliotekanauki.pl/articles/729419.pdf
- Data publikacji:
- 2007
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
variational inequality
quasi-variatioal inequality
Ricceri's conjecture
Karamardian condition
Hausdorff continuous multifunction
Kneser's minimax inequality - Opis:
-
In this paper, we derive a general theorem concerning the quasi-variational inequality problem: find x̅ ∈ C and y̅ ∈ T(x̅) such that x̅ ∈ S(x̅) and
⟨y̅,z-x̅⟩ ≥ 0, ∀ z ∈ S(x̅),
where C,D are two closed convex subsets of a normed linear space X with dual X*, and $T:X → 2^{X*}$ and $S:C → 2^D$ are multifunctions. In fact, we extend the above to an existence result proposed by Ricceri [12] for the case where the multifunction T is required only to satisfy some general assumption without any continuity. Under a kind of Karmardian's condition, we give a partial affirmative answer to an unbounded quasi-variational inequality problem. - Źródło:
-
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2007, 27, 2; 199-212
1509-9407 - Pojawia się w:
- Discussiones Mathematicae, Differential Inclusions, Control and Optimization
- Dostawca treści:
- Biblioteka Nauki