Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Karamardian condition" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On discontinuous quasi-variational inequalities
Autorzy:
Chu, Liang-Ju
Lin, Ching-Yang
Powiązania:
https://bibliotekanauki.pl/articles/729419.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
variational inequality
quasi-variatioal inequality
Ricceri's conjecture
Karamardian condition
Hausdorff continuous multifunction
Kneser's minimax inequality
Opis:
In this paper, we derive a general theorem concerning the quasi-variational inequality problem: find x̅ ∈ C and y̅ ∈ T(x̅) such that x̅ ∈ S(x̅) and
⟨y̅,z-x̅⟩ ≥ 0, ∀ z ∈ S(x̅),
where C,D are two closed convex subsets of a normed linear space X with dual X*, and $T:X → 2^{X*}$ and $S:C → 2^D$ are multifunctions. In fact, we extend the above to an existence result proposed by Ricceri [12] for the case where the multifunction T is required only to satisfy some general assumption without any continuity. Under a kind of Karmardian's condition, we give a partial affirmative answer to an unbounded quasi-variational inequality problem.
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2007, 27, 2; 199-212
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Variational inequalities in noncompact nonconvex regions
Autorzy:
Lin, Ching-Yan
Chu, Liang-Ju
Powiązania:
https://bibliotekanauki.pl/articles/729495.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Nikaidô's coincidence theorem
variational inequality
nearly convex
V₀-Karamardian condition
Saigal condition
acyclic multifunction
algebraic interior
bounding points
Opis:
In this paper, a general existence theorem on the generalized variational inequality problem GVI(T,C,ϕ) is derived by using our new versions of Nikaidô's coincidence theorem, for the case where the region C is noncompact and nonconvex, but merely is a nearly convex set. Equipped with a kind of V₀-Karamardian condition, this general existence theorem contains some existing ones as special cases. Based on a Saigal condition, we also modify the main theorem to obtain another existence theorem on GVI(T,C,ϕ), which generalizes a result of Fang and Peterson.
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2003, 23, 1; 5-19
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies