Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "K-means++" wg kryterium: Temat


Tytuł:
Zróżnicowanie wykorzystania technologii informacyjno-komunikacyjnych w krajach Unii Europejskiej
Diversity in the use of information and communication technologies among European Union countries
Autorzy:
Wojnar, Jolanta
Powiązania:
https://bibliotekanauki.pl/articles/1046656.pdf
Data publikacji:
2020-08-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
analiza składowych głównych
metoda k-średnich
technologie informacyjno-komunikacyjne
ICT
principal component analysis
k-means method
information and communication
technologies
Opis:
Celem badania omawianego w artykule jest ocena zróżnicowania krajów Unii Europejskiej pod względem stopnia wykorzystania technologii informacyjno-komunikacyjnych (ICT). Do analizy wybrano 15 wskaźników opisujących wykorzystanie ICT przez osoby fizyczne i gospodarstwa domowe. Dane pochodziły ze sprawozdań Głównego Urzędu Statystycznego oraz bazy Eurostatu i dotyczyły 2017 r. W analizie zróżnicowania zastosowano metodę analizy składowych głównych. Wykonano także analizę skupień za pomocą metody k-średnich. Z badania wynika, że liderami w dziedzinie wykorzystania ICT są kraje skandynawskie i kraje Beneluksu. Wśród najniżej ocenionych znajdują się kraje południowej i południowo-wschodniej Europy oraz Polska.
The aim of the research discussed in the article is to assess the diversity among European Union countries in terms of the use of information and communication technologies (ICT). Fifteen indicators describing the use of ICT by natural persons and households were selected for the analysis. The data were obtained from Statistics Poland reports and from the Eurostat database for the year 2017. The method of principal components analysis was applied in the process of analysing the diversity. Moreover, a cluster analysis based on the k-means method was performed. The analysis demonstrates that Scandinavian and Benelux countries are the leaders in using ICT, while countries of southern and south-eastern Europe as well as Poland are the lowest rated.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2020, 65, 8; 39-56
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie wybranych metod taksonomicznych i prospektywnych w polityce oraz strategicznym zarządzaniu publicznym
The use of selected taxonomic and foresight methods in policy making and strategic public management
Autorzy:
Baron, Marcin
Ochojski, Artur
Polko, Adam
Warzecha, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/593014.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Metoda delficka
Metoda k-średnich
Metoda warda
Prowadzenie polityki
Rozwój lokalny
Rozwój regionalny
Usługi publiczne
Zarządzanie strategiczne
Delphi method
K-means algorithm
Local development
Policy making
Public services
Regional development
Strategic management
Ward’s method
Opis:
W artykule prezentowane jest podejście metodyczne do prowadzenia kompleksowych analiz na potrzeby polityki i strategicznego zarządzania publicznego. Do identyfikacji podobnych regionów, pomiędzy którymi mogą wystąpić efekty uczenia się, zaproponowano metody taksonomiczne, natomiast metodę delficką wskazano jako odpowiednią dla lepszego zrozumienia przyszłości usług publicznych oraz zwiększenia zdolności adaptacyjnych na różnych poziomach sprawowania władzy. Metody zostały zilustrowane przykładami zastosowań, zaczerpniętymi z dorobku projektu ADAPT2DC („New innovative solutions to adapt governance and management of public infrastructures to demographic change”).
The paper aims at presenting method approach to complex analysis in support of policy making and strategic public management. Taxonomic methods are used to identify similar regions that can benefit of mutual learning and improve their performance in public service delivery. Delphi study is proposed to better understand public service futures and increase adaptation capacities on different levels of governance. The methods are illustrated with samples of ADAPT2DC project („New innovative solutions to adapt governance and management of public infrastructures to demographic change”) works and reflections concerning their application.
Źródło:
Studia Ekonomiczne; 2015, 233; 56-72
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metod taksonomicznych do analizy zużycia energii elektrycznej przez poszczególne województwa
The use of taxonomic methods for analysing electricity consumption by the individual provinces
Autorzy:
Tutak, M.
Powiązania:
https://bibliotekanauki.pl/articles/323203.pdf
Data publikacji:
2018
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
energia elektryczna
sektor gospodarczy
metoda k-średnich
grupowanie
electricity
economic sector
k-means method
grouping
Opis:
Najważniejszym czynnikiem wpływającym z jednej strony na rozwój gospodarczy i dobrobyt społeczeństwa, a z drugiej na łagodzenie skutków jego ubóstwa jest energia elektryczna i jej dostępność. Rozwijająca się gospodarka kraju generuje coraz większe zapotrzebowanie na energię. Poszczególne województwa Polski charakteryzują się różnym stopniem wykorzystania energii elektrycznej w podstawowych sektorach ekonomicznych. Wykorzystanie energii elektrycznej uzależnione jest od wielu czynników, m.in. od stopnia uprzemysłowienia regionu, lokalizacji elektrowni, a także od liczby ludności i gospodarstw domowych. W artykule przedstawiono wyniki analizy porównawczej zużycia energii elektrycznej w poszczególnych województwach Polski z uwzględnieniem sektorów ekonomicznych. Do uzyskania klasyfikacji województw w zakresie wykorzystania energii elektrycznej w sektorach ekonomicznych wykorzystano metodę analizy wielowymiarowej, która przyporządkowuje województwa do odpowiednich grup (skupień) o zbliżonej ilości zużycia energii elektrycznej.
The most crucial factor influencing economic development and social well-being, as well as resulting in the mitigation of the effects of social poverty is electricity and its availability. The country’s growing economy generates an increasingly higher demand for energy. The individual Provinces of Poland have a different degree of electricity use in the basic economic sectors. The use of electricity is dependent on a number of factors, such as a given region’s degree of industrialisation, the locations of power plants, as well as the population and household numbers. The article presents the results of a comparative analysis of electricity consumption in the individual Provinces of Poland, with account being taken of the main economic sectors. The classification of the Provinces in terms of electricity use in economic sectors was performed by means of a multi-dimensional analysis method, which assigns the Provinces to appropriate groups (clusters) having similar quantities of electricity consumed.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2018, 117; 675-686
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykrywanie defektów z wykorzystaniem termografii aktywnej i algorytmu k-średnich
Detection of Defects Using Active Thermography and k-Means Algorithm
Autorzy:
Dudzik, Sebastian
Powiązania:
https://bibliotekanauki.pl/articles/275938.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
algorytm k-średnich
wykrywanie defektów
termografia aktywna
k-means algorithm
defect detection
active thermography
Opis:
W pracy przedstawiono nową metodę wykrywania defektów materiałowych z wykorzystaniem termografii aktywnej. W celu zwiększenia kontrastu cieplnego dokonano przetwarzania wstępnego zarejestrowanej sekwencji termogramów metodami morfologii matematycznej. Do wykrywania defektów zastosowano algorytm k-średnich. W pracy zbadano wpływ miary odległości używanej w opisywanym algorytmie oraz doboru danych wejściowych na efektywność opisywanej metody. Eksperyment przeprowadzono dla próbki wykonanej z kompozytu zbrojonego włóknem węglowym (CFRP). W badaniach stwierdzono, że najmniejsze błędy wykrywania defektów za pomocą opisywanej metody uzyskuje się dla kwadratowej odległości euklidesowej.
The paper presents a new method of detecting material defects using active thermography. In order to increase the thermal contrast, preprocessing of the recorded sequence of thermograms was carried out using mathematical morphology methods. The k-means algorithm was used to detect defects. The work examined the impact of distance measure used in the described algorithm and the selection of input data on the effectiveness of the described method. The experiment was carried out for a sample made of carbon fiber reinforced composite (CFRP). Studies have shown that the smallest errors in defect detection using the described method are obtained for the square Euclidean distance.
Źródło:
Pomiary Automatyka Robotyka; 2019, 23, 3; 11-15
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie języka R do statystycznej analizy oraz analizy skupień dla danych geochemicznych
Use of R programming language for statistical analysis and cluster analysis of geochemical data
Autorzy:
Janiga, Marek
Powiązania:
https://bibliotekanauki.pl/articles/31348311.pdf
Data publikacji:
2023
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
analiza skupień
metoda k-średnich
metoda hierarchiczna
skład gazu ziemnego
cluster analysis
k-means method
hierarchical method
natural gas composition
Opis:
W zagadnieniach geologii naftowej metody statystyczne są szeroko stosowane w petrografii, petrofizyce, geochemii, geomechanice, geofizyce wiertniczej czy sejsmice, a analiza skupień jest istotna w klasyfikacji skał – wyznaczaniu stref o pewnych własnościach, np. macierzystych lub zbiornikowych. Artykuł prezentuje użycie metod statystycznych, w tym metod analizy skupień, w procesach przetwarzania i analizy dużych zbiorów różnorodnych danych geochemicznych. Do analiz statystycznych wykorzystano literaturowe dane z analiz składu chemicznego i izotopowego gazów ziemnych. Wyniki zawierały skład chemiczny gazów ziemnych oraz skład izotopowy. Zastosowano algorytmy tzw. nienadzorowanego uczenia maszynowego do przeprowadzenia analizy skupień. Grupowania było przeprowadzone dwiema metodami: k-średnich oraz hierarchiczną. Do zobrazowania wyników grupowania metodą k-średnich można wykorzystać dwuwymiarowy wykres (funkcja fviz_cluster języka R). Wymiary na wykresie to efekt analizy głównych składowych (PCA) i są one liniową kombinacją cech (kolumn w tabeli). Wynikiem grupowania metodą hierarchiczną jest wykres nazywany dendrogramem. W artykule dodatkowo zaprezentowano wykresy pudełkowe i histogramy oraz macierz korelacji zawierającą współczynniki korelacji Pearsona. Wszystkie prace wykonano z użyciem języka programowania R. Język R, z wykorzystaniem programu RStudio, jest bardzo wygodnym i szybkim narzędziem do statystycznej analizy danych. Przy użyciu tego języka uzyskanie wymienionych powyżej wykresów, tabeli i danych jest szybkie i stosunkowo łatwe. Wyniki analiz składu gazu wydają się mało zróżnicowane. Mimo to dzięki algorytmom k-średnich i hierarchicznym możliwe było pogrupowanie danych geochemicznych na wyraźnie rozdzielne zespoły. Zarówno wartości składu izotopowego, jak i skład chemiczny pozwalają wyznaczyć grupy, które w inny sposób nie byłyby dostrzegalne.
In petroleum geology, statistical methods are widely used in petrography, petrophysics, geochemistry, geomechanics, well log analysis and seismics, and cluster analysis is important for rock classification – determination of zones with certain properties, e.g., source or reservoir. This paper presents the use of the R language for statistical analysis, including cluster analysis, of large sets of diverse geochemical data. Literature data from analyses of chemical and isotopic composition of natural gases were used for statistical analyses. The results included the chemical composition of the natural gases and the isotopic composition. So-called unsupervised machine learning algorithms were used to perform the cluster analysis. Clustering was performed using two methods: k-means and hierarchical. A two-dimensional graph (function fviz_cluster) can be used to illustrate the results of the k-means clustering. The dimensions in the graph are the result of principal component analysis (PCA) and are a linear combination of the features (columns in the table). The result of hierarchical clustering is a graph called a dendrogram. The paper additionally presents box plots and histograms as well as a correlation matrix containing Pearson correlation coefficients. All work was completed using the programming language R. The R language, using the RStudio software, is a very convenient and fast tool for statistical data analysis. Obtaining the above-mentioned graphs, tables and data is quick and relatively easy, using the R language. The results of the analyses of the composition of the gas appear to have little variation. Nevertheless, thanks to k-means and hierarchical algorithms, it was possible to group the geochemical data into clearly separable groups. Both the isotopic composition values and the chemical composition make it possible to delineate groups that would not otherwise be noticeable.
Źródło:
Nafta-Gaz; 2023, 79, 9; 576-583
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie funduszy unijnych w powiatach województwa śląskiego
The use of EU funds in the districts of the Silesian province
Autorzy:
Wójcik, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/593398.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Diagram Czekanowskiego
Fundusze unijne
Metoda k-średnich
Metoda najbliższego sąsiada
Powiaty
Counties
Czekanowski’s diagram
EU funds
K-means method
Nearest neighbor method
Opis:
W artykule przedstawiono wykorzystanie funduszy unijnych w powiatach województwa śląskiego w latach 2004-2006 oraz w latach 2007-2013. Ponieważ powiaty w województwie śląskim są bardzo zróżnicowane pod względem zurbanizowania oraz ukształtowania terenu, to ich potrzeby są różne, a więc cele inwestycji też są różne. Postawiono hipotezę, że w powiatach o podobnym położeniu geograficznym i podobnej specyfice struktura projektów współfinansowanych z funduszy unijnych powinna być podobna. Do weryfikacji postawionej hipotezy wykorzystano diagram Czekanowskiego, metodę najbliższego sąsiada oraz metodę k-średnich. Otrzymane wyniki częściowo potwierdziły postawioną hipotezę.
This paper presents the use of EU funds in the districts of the Silesian province in the years 2004-2006 and 2007-2013. Since the counties in the Silesian province are very diverse in terms of urbanization and terrain that their needs are different, and therefore investment purposes are also different. It was hypothesized that in counties with a similar geographical location and similar specificity structure projects co-financed from EU funds should be similar. To verify the hypothesis used Czekanowski diagram, nearest neighbor method and k-means method. The results confirmed the hypothesis part.
Źródło:
Studia Ekonomiczne; 2017, 318; 108-124
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybrane determinanty polaryzacji samooceny w grupie wychowanków Młodzieżowych Ośrodków Wychowawczych i Socjoterapeutycznych
Selected Polarity Determinants of Self-esteem Among Pupils at Youth Detention Centers and Social Therapy Centers
Autorzy:
Wysocka, Ewa
Ostafińska-Molik, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/1371448.pdf
Data publikacji:
2017-01-29
Wydawca:
Fundacja Pedagogium
Tematy:
polaryzacja samooceny
niedostosowanie społeczne
metoda k-średnich
społeczno-demograficzne i osobowościowe determinanty polaryzacji samooceny
polarization self-esteem
social conduct disorder
k-means
socio-demographic and personality determinants of self-polarization
Opis:
W artykule dokonano analizy społeczno-demograficznych i osobowościowych determinantów/korelatów samooceny wśród wychowanków Młodzieżowych Ośrodków Wychowawczych (MOW) i Młodzieżowych Ośrodków Socjoterapeutycznych (MOS). Wstępnie przeprowadzono analizę poziomu i wymiarów samooceny (samoocena ogólna niespecyficzna, globalna specyficzna, samooceny cząstkowe niespecyficzne: fizyczna, poznawczo-intelektualna, charakterologiczna, społeczno-moralna) osób niedostosowanych społecznie, z wykorzystaniem metody k-średnich, najczęściej stosowanej w praktyce taksonomicznej metody grupowania. Podczas analizy wyłoniono trzy skupienia samoocen, które wstępnie określono jako: negatywne „odzwierciedlone ja” („I am the worst”), pozytywne „obronne ja” („I am the best”) i „ja nieustalone – chwiejne” („Who am I”), różniące się pod względem poziomu i wewnętrznego uporządkowania poszczególnych rodzajów samoocen. Następnie analizie poddano zróżnicowanie wyłonionych skupień warunkowane miejscem zamieszkania, stosunkiem do wiary, poziomem religijności oraz nastawieniami wobec świata, własnego życia i innych ludzi.
The article analyzes the socio-demographic and personality determinants/correlates of self-esteem among pupils MOW and MOS. The analysis of the level and the dimensions of self-esteem was done first (self-esteem general non-specific, global specific, partial non-specific: physical, cognitive-intellectual, characterological, socio-moral) people with conduct disorder, using the method of k-means, most often used in taxonomic practice of grouping method. In the course of analysis there were selected three groups of self-assessment, which are initially defined as: negative “reflected I” (“I am the worst”), positive “defensive I” (“I am the best”) and “I not specified – unstable” (“Who I am”), which differ in terms of the level and the internal arrangement of different types of self-assessment. Then the analysis of differences in selected clusters was conducted conditioned by a place of residence, attitude to faith, level of religiosity and attitude towards the world, one’s own life and other people.
Źródło:
Resocjalizacja Polska; 2016, 12; 119-144
2081-3767
2392-2656
Pojawia się w:
Resocjalizacja Polska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wspomaganie decyzji zakupowych w branży spawalniczej za pomocą metody K-średnich
Purchase decision-making support in the welding industry with the use of the k-means method
Autorzy:
Rogalewicz, M.
Kujawińska, A.
Powiązania:
https://bibliotekanauki.pl/articles/203222.pdf
Data publikacji:
2016
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
wspomaganie decyzji
analiza skupień
metoda k-średnich
decision support
clustering
k-means method
Opis:
Podejmowanie decyzji w przedsiębiorstwie wiąże się często z wyborem najlepszego rozwiązania na podstawie wielu kryteriów opisujących analizowany problem. Z tego punktu widzenia można go nazwać wielokryterialnym problemem decyzyjnym. W artykule przedstawiono zastosowanie jednej z metod wspomagania decyzji – analizy skupień metodą k-średnich – w doborze materiałów dodatkowych do procesu spawania metodą SAW. Dokonano podziału na skupienia, uwzględniając dwa kryteria doboru ich początkowych centrów, porównano oba warianty, a na końcu scharakteryzowano szczegółowo grupy wyodrębnione za pomocą jednego z nich. Wybrane podejście do analizy skupień okazało się przydatne we wspomaganiu decyzji dotyczących zakupów w branży spawalniczej.
Decision-making in enterprises is often connected with selecting the best solution on the basis of many criteria describing the analyzed problem. From this point of view, it can be called a multi–criterial decision–making problem. The article presents the use of a chosen clustering method – the k-means method – in the selection of materials for the SAW method process. Clusters were divided into two, based on the two different ways of choosing their initial centers. The two options were compared, and finally the clusters created on the basis of the chosen division were characterized in detail. The selected approach proved useful as decision-making support for purchasing materials in the welding industry.
Źródło:
Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie; 2016, 70; 203-214
0239-9415
Pojawia się w:
Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wielowymiarowa analiza porównawcza jako narzędzie oceny spółek deweloperskich notowanych na GPW
Multivariate comparative analysis as a toolto evaluate the development of companies listed on the Warsaw Stock Exchange
Autorzy:
Chrzanowska, Mariola
Zielińska-Sitkiewicz, Monika
Powiązania:
https://bibliotekanauki.pl/articles/425133.pdf
Data publikacji:
2013
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
Ward’s method
k-means method
Polish developer companies
Opis:
The diversity and multiplicity of information associated with investment in the stock market can cause problems with the proper understanding of the analyzed phenomena. In particular it refers to small investors who invest directly in stocks. Therefore, evaluating the financial condition of listed companies is very important, hence the need to use methods that will simplify and thus make stock market analysis easier. This paper presents an attempt to apply the selected financial ratios for the classification of 17 real estate companies listed on the Warsaw Stock Exchange into groups characterized by a similar economic condition. In the study multidimensional comparative analysis was used, i.e. Ward’s method and the method of k-means. The analysis was carried out in the period 2010-2012. In the experiment it was proved that using Ward’s method could identify companies with the weakest condition.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2013, 4(42); 60-71
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The selection of areas for case study research in socio-economic geography with the application of k-means clustering
Wybór obszarów do studiów przypadku w geografii społeczno-ekonomicznej z zastosowaniem metody grupowania k-średnich
Autorzy:
Warchalska-Troll, Agata
Warchalski, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/1984996.pdf
Data publikacji:
2022-02-28
Wydawca:
Główny Urząd Statystyczny
Tematy:
case study
k-means partitioning
elbow method
pseudo-F statistic
Calinski-Harabasz index
studium przypadku
grupowanie metodą k-średnich
metoda łokcia
statystyka pseudo-F
wskaźnik Calińskiego-Harabasza
Opis:
The grouping techniques which are known in statistics are rarely used by geographers to select a research area. The aim of the paper is to examine the potential use of the k-means clustering (partitioning) method for the selection of spatial units (here: gminas, i.e. the lowest administrative units in Poland) for case studies in socio-economic geography. We explored this topic by solving a practical problem consisting in the optimal designation of gminas for in-depth research on the interaction between nature protection and local and regional development in the Polish Carpathians. Particular attention was devoted to defining an appropriate number of clusters by means of the elbow method as well as the pseudo-F statistic (the Calinski-Harabasz index). The data for the analysis were mostly provided by Statistics Poland and covered the period of 1999–2012. The multi-stage procedure resulted in the selection of the following gminas: Cisna, Lipinki, Ochotnica Dolna, Sękowa, Szczawnica and Zawoja. The example described in the paper demonstrates that the k-means technique, despite its certain deficiencies, may prove useful for creating classifications and typologies leading to the selection of case study sites, as it is relatively time-effective, intuitive and available in opensource software. At the same time, due to the complexity of the socio-economic characteristics of the areas, the application of this method in socio-economic geography may require support in terms of the interpretation of the results through the analysis of additional data sources and expert knowledge.
Znane w statystyce techniki grupowania są rzadko wykorzystywane przez geografów do wyboru obszaru badań. Celem analiz opisanych w artykule było sprawdzenie możliwości zastosowania metody podziału k-średnich do wyboru jednostek przestrzennych (w tym przypadku gmin) do studiów przypadku. Dokonano tego poprzez rozwiązanie problemu metodycznego polegającego na optymalnym wyznaczeniu gmin do pogłębionych badań nad relacją między ochroną przyrody a rozwojem lokalnym i regionalnym w polskich Karpatach. Szczególną uwagę zwrócono na określenie odpowiedniej liczby skupień za pomocą metody łokcia (ang. elbow method) oraz statystyki pseudo-F (wskaźnika Calińskiego-Harabasza). Dane wykorzystane w analizach pochodziły z Głównego Urzędu Statystycznego i obejmowały okres 1999–2012. W rezultacie kilkustopniowej procedury wytypowano gminy: Cisna, Lipinki, Ochotnica Dolna, Sękowa, Szczawnica i Zawoja. Opisany w artykule przykład pokazuje, że metoda k-średnich, pomimo pewnych słabości, może być przydatna do tworzenia klasyfikacji i typologii prowadzących do wyboru obszarów do studiów przypadku ze względu na jej użyteczność oraz dostępność w oprogramowaniu typu open source. Zarazem jednak – z uwagi na stopień złożoności społeczno-ekonomicznych cech obszarów – zastosowanie tej metody w geografii społeczno-ekonomicznej może wymagać wsparcia interpretacji jej wyników analizą dodatkowych źródeł informacji oraz wiedzą ekspercką.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2022, 67, 2; 1-20
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The PROMETHEE II method in multi-criteria evaluation of cryptocurrency exchanges
Metoda PROMETHEE II w wielokryterialnej ocenie giełd kryptowalut
Autorzy:
Kądziołka, K.
Powiązania:
https://bibliotekanauki.pl/articles/2048732.pdf
Data publikacji:
2021
Wydawca:
Akademia Bialska Nauk Stosowanych im. Jana Pawła II w Białej Podlaskiej
Tematy:
k-means algorithm
hierarchical clustering
cryptocurrency exchanges
composite indicator
weighting scheme
PROMETHEE II
Opis:
Subject and purpose of work: The aim of this work is to present the application possibilities of PROMETHEE II method used to create a ranking of cryptocurrency exchanges as well as comparing the results of multi-criteria and multi-dimensional analysis. A simulation method for determining the weights of criteria is proposed, which maximizes the similarity of the final ranking to the other ones. Materials and methods: PROMETHEE II method and taxonomic measure were used to create rankings of exchanges. Hierarchical clustering combined with the k-means algorithm was used to identify groups of exchanges with a similar level of the values of net flows. Publicly available data published on the Internet were analysed. Results: There was a high consistency in the ordering of exchanges when a multi-criteria and a multi-dimensional approach were used. Four groups of exchanges with a similar level of the values of net flows were identified. Exchanges in group one were characterized by the highest average net flows. Conclusions: The multi-criteria approach can be used as an alternative to the multi-dimensional assessment of cryptocurrency exchanges. The proposed simulation method for determining the weights of criteria can be helpful in case the researcher has no information about the importance of the criteria.
Źródło:
Economic and Regional Studies; 2021, 14, 2; 131-145
2083-3725
2451-182X
Pojawia się w:
Economic and Regional Studies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The number of clusters in hybrid predictive models: does it really matter?
Autorzy:
Łapczyński, Mariusz
Jefmański, Bartłomiej
Powiązania:
https://bibliotekanauki.pl/articles/1046637.pdf
Data publikacji:
2020
Wydawca:
Główny Urząd Statystyczny
Tematy:
hybrid predictive model
k-means algorithm
decision trees
Opis:
For quite a long time, research studies have attempted to combine various analytical tools to build predictive models. It is possible to combine tools of the same type (ensemble models, committees) or tools of different types (hybrid models). Hybrid models are used in such areas as customer relationship management (CRM), web usage mining, medical sciences, petroleum geology and anomaly detection in computer networks. Our hybrid model was created as a sequential combination of a cluster analysis and decision trees. In the first step of the procedure, objects were grouped into clusters using the k-means algorithm. The second step involved building a decision tree model with a new independent variable that indicated which cluster the objects belonged to. The analysis was based on 14 data sets collected from publicly accessible repositories. The performance of the models was assessed with the use of measures derived from the confusion matrix, including the accuracy, precision, recall, F-measure, and the lift in the first and second decile. We tried to find a relationship between the number of clusters and the quality of hybrid predictive models. According to our knowledge, similar studies have not been conducted yet. Our research demonstrates that in some cases building hybrid models can improve the performance of predictive models. It turned out that the models with the highest performance measures require building a relatively large number of clusters (from 9 to 15).
Źródło:
Przegląd Statystyczny; 2019, 66, 3; 228-238
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The K-means Grouping Method as a Mean to Control the Performance of the Production Process
Wykorzystanie metody grupowania k-średnich do kontroli wydajności procesu produkcyjnego
Autorzy:
Kęsek, Marek
Powiązania:
https://bibliotekanauki.pl/articles/318166.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
production process performance
clustering
k-means
production cycle
R language
VBA
process mining
bolting
wydajność procesu produkcyjnego
grupowanie (clusterng)
cykl produkcyjny
język R
kotwienie (bolting)
Opis:
The paper presents a concept of using clusters of objects using the k-means method to control the performance of the production process, which runs under variable conditions. The distribution of the production process performance in production cycles grouped according to similarity is the basis for controlling the performance of subsequent production cycles. The practical part of the paper contains an example of calculations carried out according to this concept using the VBA and R languages, and is relates to the bolting process in underground mines.
W artykule przedstawiono koncepcję wykorzystania grupowania obiektów metodą k-średnich do kontroli wydajności procesu produkcyjnego, który przebiega w zmiennych warunkach. Rozkłady wydajności procesu produkcyjnego w pogrupowanych pod względem podobieństwa cyklach produkcyjnych, stanowią podstawę kontroli wydajności kolejnych cykli produkcyjnych. Część praktyczna pracy zawiera przykład obliczeń przeprowadzonych według tej koncepcji z użyciem języka VBA oraz języka R i dotyczy procesu kotwienia w kopalniach podziemnych.
Źródło:
Inżynieria Mineralna; 2020, 1, 1; 257-264
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The approach to supply chain cooperation in the implementation of sustainable development initiatives and companys economic performance
Autorzy:
Małys, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/22443111.pdf
Data publikacji:
2023
Wydawca:
Instytut Badań Gospodarczych
Tematy:
sustainable development
sustainable supply chain
sustainable development initiatives
corporate sustainability
k-means method
Opis:
Research background: The idea of sustainable development, in the face of the challenges encountered by contemporary society, is gaining increasing popularity. Currently, it recognizes the substantial role that companies play in its successful implementation. Initiatives in the field of sustainable development may be undertaken by companies independently as part of their own activities, or together with entities forming the supply chain as an element of sustainable supply chain management. Purpose of the article: Identification of groups of companies that are characterised by a different approach to cooperation in the field of sustainable development in the supply chain. Methods: The quantitative research was conducted in September 2020 with the use of the CATI (Computer-Assisted Telephone Interview) technique and a standardised survey questionnaire. A total of 500 randomly selected companies located in Poland participated in this study. The respondents were representatives of top management of the companies. In order to identify various groups of companies, a cluster analysis was performed using the k-means method in SPSS. Findings & value added: Based on the literature analysis, 3 areas of sustainable development have been identified, in which companies can become involved ? green design, sustainable operations, and reverse logistics & waste management. For each of the 3 areas, 3 clusters of companies were identified: companies that are not involved in sustainable development at all (1), companies that carry out most of the sustainable development initiatives independently (2), companies that carry out most of the sustainable development initiatives jointly with supply chain partners (3). The article also shows that the companies in different cluster differ in terms of perceived economic benefits achieved thanks to the implementation of sustainable development initiatives. This may suggest the need to develop separate sustainability solutions for such groups of companies in the future.
Źródło:
Equilibrium. Quarterly Journal of Economics and Economic Policy; 2023, 18, 1; 255-286
1689-765X
2353-3293
Pojawia się w:
Equilibrium. Quarterly Journal of Economics and Economic Policy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Application of Association Rules to Detect the Effects of Vaccinations against Covid-19 in the EU-27. Preliminary Estimates
Stosowanie zasad stowarzyszenia w celu wykrywania skutków szczepionek przeciwko COVID-19 w UE-27. Wstępne szacunki
Autorzy:
Berezka, Kateryna
Powiązania:
https://bibliotekanauki.pl/articles/2196126.pdf
Data publikacji:
2023
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
COVID-19
association rules
k-means clustering
vaccinations
EU country
decision-making
zasady asocjacji
grupowanie k-średnich
szczepienia
kraj UE
podejmowanie decyzji
Opis:
In this research study, the authors obtained the preliminary evaluation of the impact detection of vaccinations against COVID-19 in the EU-27. The empirical basis of the study was the daily number of COVID-19 cases, vaccinations, hospitalisations, and deaths in the EU countries from March 2020 to March 2022. Rules of association were used to identify non-obvious associations between vaccinations against COVID-19 and cases of illness, hospitalisations, and deaths from COVID-19. The obtained results were used to cluster the EU countries by the level of vaccinations against COVID-19, cases of COVID-19, deaths from COVID, and COVID-19 hospitalisations for the EU member states. The K-means clustering method was used for cluster analysis. Hidden dependencies of the number of COVID-19 cases, the number of COVID-19 hospitalisations, and the number of COVID-19 deaths due to the number of vaccinations against COVID-19 by EU countries were revealed. It was established with a high probability that vaccination significantly affects the level of morbidity. For the first time, association rules were obtained, which are preliminary estimates of the relationship between the dynamics of vaccinations against COVID-19 and the dynamics of COVID-19 cases, COVID-19 hospitalisations, and deaths from COVID-19 in the EU. The results can be used to make beneficial decisions, for example, to regulate vaccination policies in individual EU countries, and predict the future consequences of the COVID-19 pandemic.
W tym badaniu autorzy uzyskali wstępną ocenę skuteczności wykrywania szczepień przeciwko COVID-19 w UE-27. Empiryczną podstawą badania jest dzienna liczba zachorowań na COVID-19, szczepień, hospitalizacji i zgonów w krajach UE w okresie od marca 2020 do marca 2022 r. Reguły asocjacji posłużyły do zidentyfikowania nieoczywistych powiązań między szczepieniami przeciwko COVID-19 oraz przypadków zachorowań, hospitalizacji i zgonów z powodu COVID-19. Uzyskane wyniki posłużyły do grupowania krajów UE według poziomu szczepień przeciwko COVID-19, przypadków choroby, zgonów z jej powodu oraz hospitalizacji dla krajów członkowskich UE. Do analizy skupień zastosowano metodę k-średnich grupowania. Ujawniono ukryte zależności liczby zachorowań na COVID-19, liczby hospitalizacji z powodu COVID-19 oraz liczby zgonów z powodu COVID-19 w związku z liczbą szczepień przeciwko COVID-19 w krajach UE. Stwierdzono z dużym prawdopodobieństwem, że szczepienia istotnie wpływają na poziom zachorowalności. Po raz pierwszy uzyskano reguły asocjacyjne, które są wstępnymi szacunkami zależności między dynamiką szczepień przeciwko COVID-19 a dynamiką zachorowań na COVID-19, hospitalizacji z tego powodu i zgonów w krajach UE. Wyniki mogą posłużyć do podejmowania korzystnych decyzji, np. do uregulowania polityki szczepień w poszczególnych krajach UE i przewidywania przyszłych konsekwencji choroby.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2023, 27, 1; 1-16
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies